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Abstract

We use geometric methods of equivariant dynamical systems to address a long-
standing open problem in the theory of nematic liquid crystals, namely a proof of
the existence and asymptotic stability of kayaking periodic orbits in response to
steady shear flow. These are orbits for which the principal axis of orientation of
the molecular field (the director) rotates out of the plane of shear and around the
vorticity axis. With a small parameter attached to the symmetric part of the velocity
gradient, the problem can be viewed as a symmetry-breaking bifurcation from an
orbit of the rotation group SO(3) that contains both logrolling (equilibrium) and
tumbling (periodic rotation of the director within the plane of shear) regimes as well
as a continuum of neutrally stable kayaking orbits. The results turn out to require
expansion to second order in the perturbation parameter.
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1. Introduction

Nematic liquid crystals, regarded as fluids in which the high aspect ratio, rigid,
rod molecules require descriptive variables for orientation as well as position, are
observed to exhibit a wide range of prolonged unsteady dynamical responses to
steady shear flow. Themathematical study of these phenomena in principle involves
the Navier–Stokes equations for fluid flow coupled with equations representing
molecular alignment and nonlocal interactions between rod molecules, typically
leading to PDE systems currently intractable to rigorous analysis on a global scale
and resolved only through local analysis and/or numerical simulation. It becomes
appropriate therefore to deal with simpler models as templates for capturing some
of the dynamical regimes of interest and their responses to physical parameters. Sta-
bility and bifurcation behaviours that are robust for finite-dimensional dynamical
systems, and that numerically reflect the same orbits of interest (specifically, kayak-
ing orbits) in infinite-dimensional systems, provide a framework for extension of
rigorous results to the infinite-dimensional systems.



Kayaking Orbits for Nematic Liquid Crystals in Shear Flow

Much of thework on dynamics of liquid crystals (andmore generally, rigid large
aspect ratio polymers) in fluid flow rests on models proposed by Hess [41] and Doi
[19] that consider the evolution of the probability density on the 2-sphere (more
accurately, projective space RP2) representing unoriented directions of molecu-
lar alignment with the molecules regarded as rigid rods. Extensive theoretical and
numerical investigations ([6,21,22,47,54,55,62,64–66] to cite only a few) of these
and related nematic director or orientation tensor models in 2D or 3D reveal a
wide range of periodic molecular dynamical regimes with evocative names [47]
logrolling, tumbling, wagging and kayaking according to the behaviour (steady
versus periodic) of the principal axis of molecular orientation (the nematic direc-
tor) relative to the shear (flow velocity and velocity gradient) plane and vorticity
axis (normal to the shear plane). Tumbling orbits, for which the principal axis of
molecular orientation rotates periodically in the shear plane, are seen to be sta-
ble at low shear rates, but become unstable to out-of-plane perturbations and give
way to kayaking orbits, for which the principal molecular axis is transverse to the
shear plane, and rotates around the vorticity axis, reminiscent of the motion of the
paddles propelling a kayak along the shear flow of a calm stream. The limiting
case is logrolling, a stationary state where the principal axis of the rod ensemble
collapses onto the vorticity axis, while wagging corresponds to oscillations (but
not complete rotations) of the molecular orientation in the shear plane about some
mean angle, although wagging regimes do not appear in our analysis. We note very
recent experimental results [31] coupled with the high-resolution numerical results
of the Doi-Hess kinetic theory [30] that provide overwhelming evidence that the
kayaking orbit is responsible for the anomalous shear-thickening response of a high
aspect ratio, rodlike, liquid crystal polymer with the acronym PBDT. The papers
[27,31] give extensive lists of literature references.

In the particular case of a steady shear flow and spatially homogeneous liquid
crystal in a region in R

3, the PDEs describing the evolution of orientational order
can be simplified to an autonomous ODE in the setting of the widely-used Q-
tensor model [17,59,72] for nematic liquid crystals. The assumption of spatial
homogeneity of course rules outmany important applications, to display technology
for example, but nevertheless gives a worthwhile approximation in local domains
of homogeneity (monodomains) away from boundaries and defects. In this setting
the propensity of a molecule to align in any given direction in R3 is represented by
an order tensor Q belonging to the 5-dimensional space V of traceless symmetric
3 × 3 matrices,

V := {A ∈ R
3×3 : At = A, tr(A) = 0}, (1.1)

where { }t and tr denote transpose and trace respectively. The tensor Q is inter-
preted as the normalised second moment of a more general probability distribu-
tion on RP2. All such Q-tensor models can be associated with a moment-closure
approximation of the Smoluchowski equation for the full orientational distribution
function [27]. The derivation of the equation yields technical problems concerning
the approximation of higher-order moments, a topic of some discussion in the lit-
erature: see [23,27,46,48] for example. In this context the dimensionless equation
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for the evolution of the orientational order takes the general form

dQ

dt
= F(Q, β) := G(Q) + ω[W, Q ] + βL(Q)D (1.2)

as an equation in V ∼= R
5; here [W, Q ] = WQ − QW .1 On the right hand

side of (1.2) the first term represents the molecular interactions in the absence of
flow, derived for example from a Maier–Saupe interaction potential or Landau–
de Gennes free energy: thus G is a frame-indifferent vector field in V . In the
second term,W denotes the vorticity tensor, the anti-symmetric part of the (spatially
homogeneous) velocity gradient, providing the rotational effect of the flow with
constant coefficient ω. In the third term L(Q) is a linear transformation V → V
applied to the rate-of-strain tensor D, the symmetric part of the velocity gradient,
and represents the molecular aligning effect of the flow: the linearity in D is a
simplifying assumption. Here L(Q) depends (not necessarily linearly) on Q, and
L(Q)D is frame-indifferent with respect to simultaneous coordinate choice for the
flow and the molecular orientation. The coefficients ω and β are constant scalars
that depend on the physical characteristics of the liquid crystal molecule as well as
the flow. In this study we take ω as fixed, and regard β as a variable parameter.

In the Olmsted–Goldbart model [61] used in [12,75] the term L(Q)D is simply
a constant scalar multiple of D. A more detailed model for L(Q)D is the basis of
a series of studies by the second author and co-workers [26–30,48] as well as by
many other authors [8,35,56,63]. We draw attention also to the earlier theoretical
work [52,53] assuming a general form for L(Q)D and where similar methods to
ours are used to study equilibrium states (uniaxial or biaxial), although the question
of periodic orbits in general and kayaking orbits in particular is hardly addressed,
the existence of the latter having yet to be discovered.

We remark that although in this paper our underlying assumption is of spatial
homogeneity, there have been studies of nematic liquid crystals dynamics in a
nonhomogeneous environment; see, among others, [13] for analytical results and
[77] for numerical simulations.

A particular model of the form (1.2) that ‘combines analytic tractability with
physical relevance’ [60] is the Beris–Edwards model [4], a basis for some more
recent investigations [18,20,60,76] in both the PDE and ODE settings. Here G
is the negative gradient of a degree four Landau-de Gennes free energy function,
while the term L(Q)D takes the form

L(Q)D = 2

3
D + [D, Q ]+ − 2tr(DQ)Q, (1.3)

in which we use the notation

[H, K ]+ := HK + K H − 2

3
tr(HK )I (1.4)

1 In this paper we do not use bold face symbols for elements of V , but reserve bold face
for the higher order tensor L(Q) and for vectors inR3. This matches the convention adopted
by MacMillan in [52,53]. Lower case Greek symbols denote scalars.
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for any matrices H, K ∈ V ; here and elsewhere I denotes the 3 × 3 identity
matrix. Observe that (1.3) is a linear combination of a constant, a linear and
a quadratic term in Q, that we denote (without their coefficients) respectively
by Lc(Q)D, Ll(Q)D, Lq(Q)D. In this paper we initially work with an arbi-
trary choice of smooth2 field L(Q)D subject to a natural assumption of frame-
indifference. We then replace this by an arbitrary linear combination

L(Q)D = mcLc(Q)D + mlLl(Q)D + mqLq(Q)D, (1.5)

which helps to keep track of the analysis, and also enables the results to apply
to simpler models for which one or more of the mi may be zero. For the Beris–
Edwards model (1.3) the ratios are (mc : ml : mq) = (2/3 : 1 : −2), while
for the Olmsted–Goldbart model [61] the ratios are (1 : 0 : 0) and for the model
in [54] they are (

√
3/10 : 3/7 : 0). Moreover, in “Appendix B” we pursue the

analysis for general L(Q)D, using the 7-term expression assumed for example in
[52,53], and show that with the exception of one term the results are the same as
those for (1.5) albeit with different interpretation of the coefficients mc,ml ,mq .
The exceptional term (being the symmetric traceless form of Q2D) also fits into
our overall framework as shown in the expressions (B.18) and (B.19) with (B.2).

When β = 0 the equation (1.2) represents the co-rotational case or long time
regime, as discussed in [60]. IfQ∗ ∈ V satisfiesG(Q∗) = 0 then frame-indifference
of G, interpreted as equivariance (covariance) of G under the action of the rotation
group SO(3) on V , implies that every element Q of the SO(3) group orbitO of Q∗
also satisfiesG(Q) = 0. If moreover [W, Q∗] = 0 then F(Q∗, 0) = 0 and so Q∗ is
an equilibrium for (1.2): the rotational component of the shear flow leaves Q∗ fixed.
This implies that Q∗ has two equal eigenvalues, and if these are less than the third
(principal) eigenvalue then Q∗ represents a logrolling regime. Moreover, [W, Q ]
is tangent to O for every Q �= Q∗ ∈ O and so O (which is topologically a copy
of RP2) is an invariant manifold for the flow on V generated by (1.2) when β = 0.
The dynamical orbit of every such Q ∈ O is periodic, as it coincides with the group
orbit of rotations about the axis orthogonal to the shear plane; in the language of
equivariant dynamics [15,25,43] it is a relative equilibrium. All of these periodic
orbits represent kayaking regimes, except for a unique orbit representing tumbling,
and they are neutrally stable with respect to the dynamics on O , as also is the
logrolling equilibrium Q∗. We discuss this geometry of the SO(3)-action on V in
more detail below; it plays a central role in what follows, as it must do in any global
study of the system (1.2), an observation of course recognised by other authors
[26,52,53].

There are a few rigorous mathematical proofs of the existence of tumbling limit
cycle orbits with limiting assumptions. By positing 2D rods, both with a tensor
model [48] and with the stochastic ODE [40], proofs follow from the Poincaré-
Bendixson theorem; for 3D rodswith a tensormodel the proof in [12] uses geometric
arguments on in-plane tensors. Until now, there has been no proof of existence of

2 Throughout the paper we take smooth to mean C∞ although the results hold with
sufficient finite order of differentiability.
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(stable) kayaking orbits, and the purpose of this paper is to provide a proof for
second-moment tensor models (1.2), (1.5) at low rates of molecular interaction
(although not necessarily low shear rates). We thus consider a dynamical regime
different from those considered by other authors in numerical simulations such as
[27,66]. A regime analogous to ours in considered in the theoretical work [52,53]
using very similar methods, but in that case the molecules are assumed biaxial and
it is equilibria rather than periodic orbits that are sought.

The approach we take is to regard β as a small parameter and view (1.2) as a
perturbation of the co-rotational case. This enables us to use tools from equivariant
bifurcation theory [15,33,43,69,70] and in particular Lyapunov–Schmidt reduction
over the group orbit O to obtain criteria for the persistence or otherwise of the
periodic orbits of the co-rotational case after perturbation, and to determine the
stability or otherwise of the resulting logrolling, tumbling and kayaking dynamics.
Our general results are independent of the choice of the interaction field G, given
that it is frame-indifferent and the logrolling state is an equilibrium: G(Q∗) = 0
(Assumptions 1, 2 in Section 2) and also that the eigenvaluesλ,μof the linearisation
of G at Q∗ normal to O are real and nonzero (Assumption 3 in Section 3). In
addition we require a natural condition of frame-indifference for the perturbing
field L(Q)D (Assumption 4 in Section 3). Finally, the stability results require
λ,μ < 0 (Assumption 5 in Section 7). However, our methods do not allow us to
make deductions when β is large compared with the rotational coefficient ω. Other
limit cycles are possible, and indeed are routinely observed numerically.

Our main result is Theorem 7.7 with Remark 7.9, showing that the existence
of a limit cycle kayaking orbit after perturbation depends on the ratio λ/μ as well
as the size of the product λμ relative to the rotation coefficient ω. We show also
in Corollary 7.8 that for the Beris–Edwards and Olmsted–Goldbart models the
kayaking orbit is linearly stable without further assumption.

This paper is organised as follows. In Section 2 we discuss symmetries of the
model and key features of the action of SO(3) on V that it inherits from the usual
action onR3. Of particular importance are the tangent and normal subspaces to the
group orbit O . Section 3 gives initial results showing the persistence of log-rolling
and tumbling regimes after perturbation, and introduces the rotating coordinate
system convenient for further analysis. In Section 4 a natural Poincaré section for
the (dynamical) flow near O is described and relevant first-order derivatives of the
associated Poincaré map are calculated and shown to vanish. Lyapunov–Schmidt
reduction is applied in Section 5 to obtain a real-valued bifurcation function defined
on a meridian ofO . This function happens to vanish to first order in β and so we are
obliged to pursue the β-expansion to second order. In Section 6 we choose L(Q)D
explicitly as (1.5) and evaluate these second order terms. Finally, in Section 7 the
zeros of the bifurcation function are found and the conditions for existence and
stability of kayaking motion are determined. For the specific cases of the Beris–
Edwards and Olmsted–Goldbart models with Landau–de Gennes free energy the
criteria for existence and stability of kayaking orbits are stated explicitly. Following
abrief concluding section there areAppendices giving some technical results arising
from symmetries that simplify the main calculations, as well as a discussion of how
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a fully general formof themolecular alignment term L(Q)D fits into the framework
of our analysis.

2. Geometry and Symmetries of the System

The molecular interaction field G is independent of the coordinate frame and
therefore equivariant (covariant) with respect to the action of the rotation group
SO(3) on V by conjugation induced from the natural action on R

3. Therefore our
first working assumption in this paper is the following:

Assumption 1. ˜RG(Q) = G(˜RQ) for all Q ∈ V and R ∈ SO(3)
where we use the notation

˜RQ := RQR−1.

Further discussion of equivariant maps, in particular relating to the action of
SO(3) on V that we shall use extensively in this paper, is given in “Appendix A”.

Choosing coordinates (x, y, z) ∈ R
3 so that the shear flow velocity field has

the form k(y, 0, 0) for constant k �= 0 the velocity gradient tensor is

k

⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠

with symmetric and anti-symmetric parts kD/2 and −kW/2 respectively, where

D =
⎛

⎝

0 1 0
1 0 0
0 0 0

⎞

⎠ , W =
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠ . (2.1)

Without loss of generality we take k = 2 since the coefficients ω and β in (1.2)
are at present arbitrary. The rotational component W corresponds to infinitesimal
rotation about the z-axis.

A nonzero matrix Q ∈ V is called uniaxial if it has two equal eigenvalues less
than the third, in which case it is invariant under rotations about the axis determined
by the third eigenvalue. Matrices with three distinct eigenvalues are biaxial. In this
paper an important role is played by the uniaxial matrix

Q∗ := a

⎛

⎝

−1 0 0
0 −1 0
0 0 2

⎞

⎠ , (2.2)

where 0 < a < 1/3 for which the principal axis (largest eigenvalue) is the z-axis
and about which Q∗ is rotationally invariant. We take a > 0 to ensure that Q∗ is
uniaxial, and the upper bound on a is imposed for physical reasons since the second
moment of the probability distribution defining the Q-tensor has eigenvalues in the
interval [0, 1] and so those of Q are no greater than 2/3: see [3] for example. We
exclude a = 1/3 as we shall need to work in a neighbourhood of Q∗.

Our second underlying assumption is that this phase is an equilibrium for the
system (1.2) in the absence of flow, that is when ω = β = 0. In other words, we
have
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Assumption 2. The coefficient a is such that G(Q∗) = 0.

With this assumption, the equivariance property of G implies that G vanishes
on the entire SO(3)-orbitO of Q∗ in V , andO is an invariant manifold for the flow
on V generated by (1.2) with β = 0. The dynamical orbits on O coincide with
the group orbits of rotation about the z-axis under which Q∗ remains fixed, this
being the only fixed point on O since if Q ∈ O and [W, Q ] = 0 then Q is a scalar
multiple of and hence equal to Q∗.

2.1. Rotation Coordinates: the Veronese Map

For calculation purposes it is natural and convenient to take coordinates in V
geometrically adapted to O . We do this in a standard way by representing the orbit
O of Q∗ as the image of the unit sphere S2 ⊂ R

3 under the map

V : R3 → V : z 
→ a(3zzt − |z|2 I ),
where again t denotes matrix (or vector) transpose. Here V is the projection to V
of the case n = 3 of the more general Veronese map construction R

n → R
m with

m = (n
2

)

and it represents O as a Veronese surface in R
5: see for example [34] or

[39]. It is straightforward to check that V is equivariant with respect to the actions
of SO(3) on R

3 and V , that is, if R ∈ SO(3) then

V (Rz) = ˜RV (z) (2.3)

for all z ∈ R
3. Note that Q∗ = V (e3)where {e1, e2, e3} is the standard basis inR3,

and that V (e1) and V (e2) are obtained from Q∗ by permutation of the diagonal
terms.

On V we have a standard inner product given by 〈H, K 〉 = tr(HtK ) =
tr(HK ). However, the Veronese map is quadratic and does not preserve inner
products. Nevertheless, up to a constant factor, its derivative does preserve inner
products on tangent vectors to S

2. Explicitly,

DV (z) : u 
→ a(3zut + 3uzt − 2z · u I ) (2.4)

with the dot denoting usual inner product in R
3, from which it follows that for

z ∈ S
2 and u, v ∈ R

3 orthogonal to z,

DV (z)u · DV (z)v = a2tr
(

(3zut + 3uzt − 2z · u I )(3zvt + 3vzt − 2z · v I ))

= a2tr(zutvzt) = a2u · v. (2.5)

Observe that the restriction of V to S
2 is a double cover S2 → O since V (−z) =

V (z) for all z ∈ R
3. Through V the familiar latitude and longitude coordinates on

S
2 go over to a corresponding coordinate system on O . Any z �= e3 ∈ S

2 can be
written using spherical coordinates as

z = Rze3 = R3(φ)R2(θ) e3 (2.6)
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for unique θ mod π and φ mod 2π , where R j (ψ) denotes rotation by angle ψ

around the j th axis in R3, j = 1, 2, 3, so that, in particular,

R2(θ) =
⎛

⎝

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞

⎠ , R3(φ) =
⎛

⎝

cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞

⎠ .

Hence by (2.6) and equivariance (2.3) any Z ∈ O can be written (not uniquely) as

Z = V (z) = ˜RzQ
∗ = ˜R3(φ)˜R2(θ)Q∗ =: Z(θ, φ) (2.7)

for some z ∈ S
2, as the counterpart of (2.6) using rotations ˜R on V in place of R

on R
3. We shall make frequent use of this notation throughout the paper.
By analogy with S

2 we call each closed curve θ = const �= 0 mod π on O a
latitude curve and each curve φ = const on O a meridian. It follows from (2.5)
that all latitude curves are orthogonal to all meridians. The case θ = 0 mod π

corresponds to Q∗, and so we think of Q∗ as the north pole of O ∼= RP2.

Remark 2.1. The expression (2.6) provides the standard spherical coordinates
on S

2. Standard Euler angle coordinates on SO(3) are obtained as the compo-
sition of three rotation matrices; the Veronese coordinates for O provided by (2.7)
are obtained by disregarding one of those rotations.

2.2. Isotypic Decomposition

The rotation symmetry of O about the north pole Q∗ plays a fundamental role
in our analysis of (1.2) for sufficiently small nonzero β, and enables us to choose
coordinates in V that are strongly adapted to the inherent geometry of the problem.
More generally, for any z ∈ S

2 let


z = {R ∈ SO(3) : Rz = z} ∼= SO(2) ⊂ SO(3)

denote the isotropy subgroup of z (namely the group of rotations about the z-axis)
under the natural action of SO(3) on R

3. Equivariance of V implies that 
z also
fixes Z = V (z) in O under the conjugacy action, and moreover Z is an isolated
fixed point of 
z on O since z is an isolated fixed point of 
z on S

2.
At this point it is convenient to develop some further machinery from the theory

of linear group actions to describe key features of the geometry highly relevant to
our analysis. Introductions to the theory of group actions and orbit structures can
be found, for example, in [1,14,58].We shall make much use of the further fact that
corresponding to the action of
z on V there is an isotypic decomposition of V (for
theoretical background to this notion see for example [15,25,33]) into the direct
sum of three 
z-invariant subspaces

V = V Z
0 ⊕ V Z

1 ⊕ V Z
2 (2.8)
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on each of which 
z acts differently: the element Rz(ψ) ∈ 
z denoting rotation
about the z-direction through angle ψ acts on V Z

k by rotation through kψ for

k = 0, 1, 2. In particular, with z = e3 and Z = Q∗ writing V ∗
k = V Q∗

k we have

V ∗
0 := span{E0} (2.9)

V ∗
1 := span{E1(α)}α∈[0,2π) (2.10)

V ∗
2 := span{E2(α)}α∈[0,π), (2.11)

where the mutually orthogonal matrices E0, E1(α), E2(α) are given by

E0 := 1

a
√
6
Q∗,

E1(α) := 1√
2

⎛

⎝

0 0 cosα

0 0 sin α

cosα sin α 0

⎞

⎠ , E2(α) := 1√
2

⎛

⎝

cos 2α sin 2α 0
sin 2α − cos 2α 0
0 0 0

⎞

⎠

(2.12)

and we set

E11 = E1(0), E12 = E1(π/2), E21 = E2(0), E22 = E2(π/4). (2.13)

Here R3(φ) acts on V ∗
1 and V ∗

2 by

˜R3(φ)E1(α) = E1(α + φ), ˜R3(φ)E2(α) = E2(α + φ) (2.14)

where we keep in mind that E2(α) is defined in terms of 2α. For Z = Z(θ, φ) as
in (2.7) we use the notation

EZ
1 (α) = ˜R3(φ)˜R2(θ)E1(α), EZ

2 (α) = ˜R3(φ)˜R2(θ)E2(α) (2.15)

and

EZ
i j = ˜R3(φ)˜R2(θ)Ei j , i, j ∈ {1, 2}, (2.16)

so that

V Z
0 = span{EZ

0 }
V Z
1 = span{EZ

1 (α)}α∈[ 0,2π) = span{EZ
11, EZ

12}
V Z
2 = span{EZ

2 (α)}α∈[ 0,π) = span{EZ
21, E

Z
22} .

A consequence of SO(3)-equivariance is that for Z ∈ O the derivative DG(Z) :
V → V respects the decomposition (2.8) and commutes with the 
z-rotations
on each component. A further important consequence that simplifies several later
calculations is the following:

Proposition 2.2. If a differentiable function f : V → R is invariant under the
action of 
z then its derivative D f (Z) : V → R annihilates V Z

1 ⊕ V Z
2 .

Proof. If f (˜RQ) = f (Q) for all R ∈ 
z and Q ∈ V then D f (˜RQ)˜R = D f (Q)

and so in particular D f (Z)˜R = D f (Z) for all R ∈ 
z. The only linear map
V → R invariant under all rotations of V Z

1 and of V Z
2 must be zero on those

components. ��



Kayaking Orbits for Nematic Liquid Crystals in Shear Flow

2.3. Alignment Relative to the Flow

Since the element R3(π) ∈ SO(3) acts on V ∗
k by a rotation through kπ it

follows that V ∗
0 ⊕V ∗

2 is precisely the fixed-point space for the action of R3(π) on V .
Thus Q = (qi j ) ∈ V is fixed by ˜R3(π) if and only if q13 = q23 = 0, in which case
q33 is an eigenvalue with eigenspace the z-axis and the other eigenspaces lie in (or
coincide with) the x, y-plane. It is immediate to check that if Q = pE0 + qE2(α)

then the eigenvalues of Q are 2p/
√
6 and (−p±√

3q)/
√
6 and so Q has two equal

eigenvalues precisely when

q = 0 or q = ±√
3p. (2.17)

In the first case Q = pE0, while in the second case the eigenvalues are 2p/
√
6

(repeated) and −4p/
√
6 so that if p < 0 then Q is uniaxial with principal axis

lying in the x, y-plane.
From the point of view of the liquid crystal orientation relative to the shear

flow such matrices Q are called in-plane; nonzero matrices which are not in-plane
are called out-of-plane. This agrees with standard terminology where tumbling and
wagging dynamical regimes are described as in-plane (see [21,64] for example),
while logrolling and kayaking are out-of-plane.

Let C denote the equator {θ = π/2} of S2, and let C = V (C) ⊂ O which we
also call the equator of O . It is straightforward to check that

C = {V (cosφ, sin φ, 0) : 0 ≤ φ < 2π}
= a

√
6{cos 2π

3 E0 + sin 2π
3 E2(φ) : 0 ≤ φ < 2π} ⊂ O ⊂ V . (2.18)

Proposition 2.3.

O ∩ (V ∗
0 ⊕ V ∗

2 ) = {Q∗} ∪ C .

Proof. Since V ∗
0 ⊕ V ∗

2 is the orthogonal complement to V ∗
1 we see Q ∈ V ∗

0 ⊕ V ∗
2

if and only if 〈Q, E1(α)〉 = 0 for all α. If Z = V (z) ∈ O , then

〈Z , E1(α)〉 = 3a tr(zztE1(α)) = 3az · E1(α)z.

With z = (cosφ sin θ, sin φ sin θ, cos θ)t in usual spherical coordinates we find
z · E1(α)z = (1/

√
2) sin 2θ cos(φ −α)which vanishes for all α just when sin 2θ =

0, that is θ = 0 or θ = π/2 corresponding to Z = Q∗ or Z ∈ C , respectively. ��
When β = 0 the equation (1.2) reduces on O to

dQ

dt
= ω[W, Q ],

since G(Q) = 0 for Q ∈ O , giving solution curves t 
→ ˜R3(ωt)Q each of which
has least period 2π/ω apart from the equilibrium Q∗ and the equator C : this has
least period π/ω, the equator C of S1 being a double cover of C via the Veronese
map. A matrix Q ∈ C is in-plane and its dynamical orbit corresponds to steady
rotation of period π/ω about the origin in the shear plane, and so C represents a
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tumbling orbit. All latitude curves ofO other than the equatorC represent kayaking
orbits of period T0 = 2π/ω and of neutral stability on O and so most of them are
unlikely to persist for β �= 0. The geometry can be visualised as follows: removing
the poles at z = ± e3 fromS

2 leaves an (open) annulus foliated by circles of latitude,
so that removing Q∗ fromO leaves aMöbius strip foliated by closed latitude curves
each of which traverses the strip twice since Z(π/2+ θ, φ) = Z(π/2− θ, φ +π),
except for the ‘central curve’ C given by θ = 0 which traverses it only once.

2.4. Tangent and Normal Vectors to the Group Orbit O

The 2-dimensional tangent spaceT Z toO at Z ∈ O is spanned by infinitesimal
rotations of Z , that is,

T Z = span { [Wi , Z ], i = 1, 2, 3 },
where

d

dθ
˜Ri (θ)Q

∣

∣

θ=0 = [Wi , Q ] = Wi Q − QWi ,

with

W1 =
⎛

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎠ W2 =
⎛

⎝

0 0 1
0 0 0

−1 0 0

⎞

⎠ W3 =
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠ .

(2.19)

However, for Z �= Q∗ the tangent space T Z is also spanned by the tangents at Z
to the meridian and latitude curve of O through Z .

Lemma 2.4. Let Z ∈ O with Z �= Q∗. The (1-dimensional) tangent spaces at Z
to the meridian and latitude curve of O through Z are spanned by E Z

11 and EZ
12,

respectively.

Proof. If φ = 0 the vectors R2(θ) e1 and e2 = R2(θ) e2 are respectively tangent
to the meridian and latitude of S

2 through z ∈ S
2, and so applying R3(φ) gives

that the vectors Rze1 and Rze2 are respectively tangent to the meridian and latitude
through z in the general case. Therefore the corresponding tangent spaces at Z =
V (z) ∈ O are spanned by DV (z)Rze j for j = 1, 2 respectively. The equivariance
property (2.3) gives DV (Rz)R = ˜RDV (z) for any z ∈ S

2 and R ∈ SO(3), and so,
as z = Rze3,

DV (z)Rze j = DV (Rze3)Rze j = ˜Rz DV (e3)e j (2.20)

for j = 1, 2. It is immediate to check, using (2.4) and (2.12), that

DV (e3)e1 = 3
√
2aE11, DV (e3)e2 = 3

√
2aE12, (2.21)

and so applying ˜Rz gives the result. ��
Corollary 2.5. T Z = span{EZ

11, E
Z
12} = V Z

1 . ��
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The latitude curve through Z = Z(θ, φ) ∈ O is the orbit of Z under the action
of 
e3 = {R3(φ)}φ∈[ 0,2π) and so its tangent at Z is spanned by [W3, Z ]. Indeed,
we find that

[W3, Z ] = 3
√
2a sin θ EZ

12, (2.22)

which we shall make use of below.
From Corollary 2.5 it follows that the normal spaceN Z toO at Z (the orthog-

onal complement in V to the tangent space T Z ) is given by

N Z = V Z
0 ⊕ V Z

2 . (2.23)

3. The Dynamical System After Perturbation

Since G is SO(3)-equivariant and so in particular is equivariant with respect
to the action of the isotropy subgroup 
z on V , the fact that 
z fixes Z means
that the derivative DG(Z) : V → V respects the decomposition (2.8). Moreover,
Assumption 2 and equivariance imply that G vanishes on the entire orbit O and so
DG(Z) vanishes on T Z = V Z

1 .
Let λ denote the eigenvalue of DG(Z) on V Z

0 = span{Z}, which by equivari-
ance is independent of Z ∈ O . Since DG(Z) commutes with the rotation action
of 
z on V Z

2 its two eigenvalues on V Z
2 are complex conjugates and again inde-

pendent of Z ; we assume them to be real (as they will be in the gradient case, of
most interest to us) and denote them by μ (repeated).

Assumption 3. μ ∈ R and λμ �= 0.

Even without the assumption μ ∈ R but with λ and �(μ) both nonzero the
manifold O is normally hyperbolic and therefore it persists as a unique nearby
smooth flow-invariant manifold O(β) for (1.2) for sufficiently small |β| > 0;
see [24,42] for the general theory invoked here. Our interest is to discover which
periodic orbits on O persist as periodic orbits after such a perturbation.

Remark 3.1. The same approach is used in [52,53] to detect steady states (equilib-
ria) bifurcating from more general group orbits. The geometry of the tangent and
normal spaces to all orbits of SO(3) in V is exploited there in a significant way,
although using constructions slightly different from ours.

We now make explicit the assumption of linearity and frame-indifference of
the contribution to (1.2) from the non-rotational component of the shear flow. The
frame-indifference is natural for a physical model, while the linearity is generally
assumed for simplicity; see for example [51] and compare equation (4) in [36].

Assumption 4. The term L(Q)D is linear in D, and L(˜RQ)˜RD = ˜R L(Q)D for
all Q ∈ V and R ∈ SO(3).

It is immediate to check that Assumption 4 holds for (1.5). As a consequence,
we have the following elementary result:
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Proposition 3.2. If Q ∈ V is fixed by the action of R ∈ SO(3) then ˜RL(Q)D =
L(Q)˜RD. ��
Corollary 3.3. Each term of F(·, β) maps N ∗ := N Q∗

into itself, and so the
subspace N ∗ is invariant under the flow of F(·, β) for all β.

Proof. Using (2.23) we see from Section 2.3 that N ∗ is the fixed-point subspace
for the action of R3(π) on V . If Q ∈ N ∗ then G(Q) ∈ N ∗ by equivariance,
and [W, Q ] ∈ N ∗ since W ∈ N ∗. Also Proposition 3.2 gives ˜R3(π)L(Q)D =
L(Q)˜R3(π)D = L(Q)D and so L(Q)D ∈ N ∗. ��

From the symmetry and Corollary 3.3 we have two immediate results: the north
pole Q∗ equilibrium (logrolling) and the equatorC periodic orbit (tumbling) persist
after perturbation.

Proposition 3.4. Let ω �= 0 be fixed. For sufficiently small |β| there exist for (1.2)
(i) a smooth family of equilibria Q∗(β) inN ∗ with Q∗(0) = Q∗;
(ii) a smooth family of periodic orbitsC (β) inN ∗ withC (0) = C and with period

tending to π/ω as β → 0.

Proof. (i) The eigenvalues of DG(Q∗) are λ, 0 (repeated) and μ (repeated) with
eigenspaces V ∗

0 , V ∗
1 , V ∗

2 respectively, and the corresponding eigenvalues of Q 
→
ω[W, Q ] are 0,± iω,± 2iω by (2.9)–(2.11) and the remarks preceding. Hence the
eigenvalues of DF(Q∗, 0) are

λ,±iω,μ ± 2iω

and so by the Implicit Function Theorem there exists a smooth family of equilibria
Q∗(β) with Q∗(0) = Q∗ and with (for β fixed) Q∗(β) the only equilibrium close
to Q∗. Since F(·, β) maps N ∗ to itself by Corollary 3.3, the Implicit Function
Theorem restricted to N ∗ implies that Q∗(β) ∈ N ∗.

(ii) The equator C lies inO ∩N ∗ and is an isolated periodic orbit inN ∗ with
characteristic multipliers there eπλ/ω and eπμ/ω (repeated). We seek a fixed point
for the first-return map on a local Poincaré section. Since the multipliers differ
from 1, the Implicit Function Theorem applied on N ∗ gives the result. ��

3.1. Rotated Coordinates

The effect of the perturbation βL(Q)D on the system (1.2) when β �= 0 is most
usefully understood in terms of a co-moving coordinate frame that rotates with the
unperturbed system (β = 0), since in these coordinates the rotation term [W, Q ]
vanishes (cf. [60, Section 2]). Explicitly, with W = W3 and the substitution

Q = ˜R3(ωt)QR,

and writing for d
dt we have

Q̇R = ˜R3(−ωt)Q̇ − ω˜R3(−ωt)[W3, Q ],
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and so, from (1.2),

Q̇R = ˜R3(−ωt)
(

G(˜R3(ωt)QR) + ω[W3, Q ]) + β˜L(t, QR)D

−ω˜R3(−ωt)[W3, Q ],
that is

Q̇R = G(QR) + β˜L(t, QR)D, (3.1)

using SO(3)-equivariance of G ; here, for any Q ∈ V , we write

˜L(t, Q) := ˜R3(−ωt)L(˜R3(ωt)Q) = L(Q)˜R3(−ωt), (3.2)

using Assumption 4 on frame-indifference of L(Q). Thus in (3.1) and with QR

again written as Q the rotation term [W, Q ] has been removed from (1.2) at a cost
of replacing D by the time-dependent term ˜R3(−ωt)D.

For given β we denote the flow of (1.2) by ϕt (·, β) : V → V , and denote the
time evolution map of the nonautonomous system (3.1) by

Φ t, t0(·, β) : V → V .

To simplify notation in what follows we choose t0 = 0 and write for Q ∈ V

ϕ̃ t (Q, β) := Φ t,0(Q, β).

Observe in particular that, for T0 = 2π/ω,

ϕT0(Q, β) = ˜R3(2π)ϕ̃T0(Q, β) = ϕ̃T0(Q, β). (3.3)

3.2. Local Linearisation: the Fundamental Matrix

An important role will be played by the linear transformation (fundamental
matrix)

M(t, Q) := Dϕ̃t (Q, 0) : V → V (3.4)

that satisfies the local linearisation of (1.2) (also called the variational equation
[49, Ch.VIII], [37, p.23]) along the ϕ̃-orbit of Q when β = 0 , namely

Ṁ(t, Q) = DG(ϕ̃t (Q, 0)) M(t, Q), M(0, Q) = id . (3.5)

For Z = V (z) ∈ O we have G(Z) = 0 and so ϕ̃t (Z , 0) = Z for all t ∈ R when
β = 0. The variational equation (3.5) for Q = Z thus becomes

Ṁ(t, Z) = AZ M(t, Z), M(0, Z) = id, (3.6)

where

AZ := DG(Z) (3.7)

is independent of t . Moreover, since AZ is
z-equivariant, it has the decomposition

AZ = λpZ0 + 0pZ1 + μpZ2 (3.8)
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in terms of the linear projections pZi : V → V Z
i for i = 0, 1, 2, and so

M(t, Z) = et A
Z = diag {eλt , 1, eμt } (3.9)

with respect to the same decomposition (2.8). In particular we have the following
key fact.

Corollary 3.5. pZ1 M(t, Z) = pZ1 for Z ∈ O . ��
In what follows we shall make much use of this result, which states that the tangent
space T Z = V Z

1 to O at Z consists of equilibria of the variational equation at Z .

4. The Poincaré Map

All points Z ∈ O satisfy ϕT0(Z , 0) = Z for T0 = 2π/ω. Our aim is to
discover which of these periodic orbits persist for sufficiently small |β| > 0, and to
discern their stability. Systems of the form (3.1) (not necessarily with symmetry)
have a long pedigree in the differential equations literature; in our application the
symmetry plays a crucial role. The method we use is to apply Lyapunov–Schmidt
reduction to a Poincaré map to obtain a 1-dimensional bifurcation function, and to
look for its simple zeros when β �= 0: by standard arguments as in [5,7,10,16,32]
for example, these correspond to persistent periodic orbits. The existence of zeros Z
for small |β| is established by taking a series expansion of the bifurcation function
in terms of β with coefficients functions of Z . Expressions for these coefficients
in a general setting are given in [7], and in principle we could simply set out to
evaluate these expressions in our case. However, in so doing we could lose sight of
important geometric features of V that are fundamental to the shear flow problem,
and therefore instead we re-derive the relevant terms explicitly in our symmetric
setting.

4.1. Poincaré Section

Let Z = Z(θ, φ) ∈ O as in (2.7) with Z �= Q∗. LetB∗ denote the orthonormal
basis for V given by

B∗ = {E0, E11, E12, E21, E22}, (4.1)

where E0 and Ei j for i, j ∈ {1, 2} are defined in (2.12) and (2.13). LetBZ denote
the rotated basis (also orthonormal)

BZ = ˜RzB
∗ = {EZ

0 , EZ
11, E

Z
12, E

Z
21, E

Z
22} (4.2)

with notation as in (2.16). From (2.23) the 3-dimensional normal space N Z to O
in V at Z ∈ O is

N Z = V Z
0 ⊕ V Z

2 = span{EZ
0 , EZ

11, E
Z
12}, (4.3)
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so that V = T Z ⊕ N Z by Corollary 2.5, and so for sufficiently small ε0 > 0 the
union

U ε0 :=
⋃

Z∈O, 0≤ε<ε0

(

Z + N Z
ε )

forms an open tubular neighbourhood ofO in V , whereN Z
ε = {Q ∈ N Z : |Q| <

ε}.
To construct a Poincaré section for the flow of (1.2) we restrict Z to lie on a

chosen meridian

M = Mφ := {Z(θ, φ), θ ∈ [0, π)}
on O , so that

U ε0
M :=

⋃

Z∈M , 0≤ε<ε0

(

Z + N Z
ε ) (4.4)

is a smooth 4-manifold that intersectsO transversely alongM . Moreover, F(Z , 0)
is nonzero and orthogonal to U ε0

M for all Z ∈ M \Q∗ since from (1.2)

F(Z , 0) = ω[W3, Z ] = 3
√
2ωa sin θ EZ

12

by Assumption 2 and (2.22), while Lemma 2.4 shows that EZ
12 is orthogonal to

N Z and toM .
Thus U ε0

M is a global (along M ) Poincaré section for all the (periodic) orbits
throughM \Q∗ generated by the unperturbed vector field F(·, 0). The least period
for Z ∈ M \Q∗ is T0 = 2π/ω, with the exception that if Z lies on the equator C
then the least period is T0/2 = π/ω. We next show that there exists 0 < ε ≤ ε0
such that the corresponding U ε

M is in an appropriate sense a Poincaré section for
all orbits close toO generated by the perturbed vector field F(·, β) including those
lying in Q∗ + N ∗

ε .

Proposition 4.1. Let M = Mφ 0 be a meridian of O with U ε0
M a tubular neigh-

bourhood of O restricted to M constructed using the normal bundle as in (4.4).
Then there exists β0 > 0 and 0 < ε ≤ ε0 and a smooth function

T : U ε
M × (−β0, β0) → R

such that if Q ∈ U ε
M and Q /∈ Q∗ + N ∗

ε then the future (t ≥ 0) trajectory
of the system (1.2) from Q leaves U ε

M and remains in U ε0 , meeting U ε0
M for

the second time when t = T (Q, β). Furthermore, T (Q, β) → T0 = 2π/ω as
(Q, β) → (Q0, 0) with Q0 ∈ M ∪ (Q∗ + N ∗

ε ).

A key part of Proposition 4.1 is the smoothness of T on all of its domain including
(

Q∗ + N ∗
ε

) × (−β0, β0), since there F(·, β) lies in N ∗ by Corollary 3.3 and so
T is not strictly a ‘time of second return’.
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Proof. Let

Q = Z +UZ = ˜Rz(Q
∗ +U ) ∈ U ε0

M ,

where Z = Z(θ, φ) ∈ O as in (2.7) and UZ ∈ N Z with U ∈ N ∗. Then

Q̇ = ∂Q

∂θ
θ̇ + ∂Q

∂φ
φ̇ + ∂Q

∂U
U̇

= ˜Rz

(

θ̇ [W2, Q
∗ +U ] + φ̇[˜R2(−θ)W3, Q

∗ +U ] + U̇
)

, (4.5)

using

∂

∂ψ
˜R j (ψ) = ˜R j (ψ)[Wj , · ]

for j = 2, 3.
We show that there is a positive smooth function on a neighbourhood of M

that coincides with φ̇ away from Q∗ +N ∗
ε , so that time t can in effect be replaced

there by angle φ.
Writing

U = u0E0 + u1E21 + u2E22 ∈ N ∗ = V ∗
0 ⊕ V ∗

2 ,

where ui ∈ R, i = 0, 1, 2, we make use of the identities

[W1, E0] = −√
3E12

[W1, E21] = −E12

[W1, E22] = E11

[W2, E0] = √
3E11

[W2, E21] = −E11

[W2, E22] = −E12

[W3, E0] = 0

[W3, E21] = 2E22

[W3, E22] = −2E21,

(4.6)

as well as

˜R2(−θ)W3 = cos θ W3 − sin θ W1. (4.7)

Inspecting the terms on the right hand side of (4.5) we find, from (4.6), that

[W2, Q
∗ +U ] = (3

√
2a + √

3u0)E11 − u1E11 − u2E12, (4.8)

and, using (4.7),

[˜R2(−θ)W3, Q∗ +U ] = cos θ [W3, Q
∗ +U ] − sin θ [W1, Q

∗ +U ]
= 2 cos θ(u1E22 − u2E21)

− sin θ(−(3
√
2a + √

3u0)E12 − u1E12 + u2E11).

(4.9)

Next, we take the inner product of (4.5) with ˜EZ := ˜Rz ˜E , where

˜E := u2E11 + (3
√
2a + √

3u0 − u1)E12 ∈ T ∗ = V ∗
1 ,
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orthogonal to the right hand side of (4.8) and to U̇ ∈ V ∗
2 ; since ˜Rz preserves inner

products this annihilates the θ̇ and U̇ terms in (4.5) and leaves
〈

˜EZ , Q̇
〉

= φ̇ b(a, u) sin θ, (4.10)

where

b(a, u) = (3
√
2a + √

3u0 + u1)(3
√
2a + √

3u0 − u1) − u22

= (3
√
2a + √

3u0)
2 − (u21 + u22)

= (18a2 + O(|u|)),
with u = (u0, u1, u2).

The next step is to replace Q̇ in (4.10) by the right hand side F(Q, β) of (1.2).
Since G respects the isotypic decomposition (2.8) we have by equivariance G(Z +
UZ ) ∈ N Z and so

〈

˜EZ ,G(Z +UZ )
〉

= 0. (4.11)

Also,
〈

˜EZ , [W3, Z +UZ ]
〉

= 〈

˜E, [˜R2(−θ)W3, Q
∗ +U ]〉

= b(a, u) sin θ, (4.12)

as in (4.9), (4.10). Finally,
〈

˜EZ , L(Q)D
〉

=
〈

˜E, ˜R−1
z L(Q)D

〉

=
〈

˜E, L(Q∗ +U )˜R−1
z D

〉

, (4.13)

from the frame-indifference Assumption 4. Writing ˜R−1
z D = D0

T + D0
N with

D0
T ∈ T ∗ = V ∗

1 and D0
N ∈ N ∗ = V ∗

0 ⊕ V ∗
2 we see from Corollary 3.3 that D0

N
makes zero contribution to (4.13), and so we focus on D0

T . We have by elementary
matrix evaluation

〈

E11, D
0
T

〉

=
〈

E11, ˜R−1
z D

〉

= 〈

˜R2(θ)E11, ˜R3(−φ)D
〉 = 1√

2
sin 2θ sin 2φ,

(4.14)

since D = √
2E22, while

〈

E12, D
0
T

〉

=
〈

E12, ˜R−1
z D

〉

= 〈

˜R2(θ)E12, ˜R3(−φ)D
〉 = √

2 sin θ cos 2φ, (4.15)

hence

D0
T = √

2 sin θ(cos θ sin 2φE11 + cos 2φE12). (4.16)

Therefore, from (4.13) and (4.16),
〈

˜EZ , L(Q)D
〉

= √
2 L12(θ, φ) sin θ, (4.17)
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where

L12(θ, φ) = 〈

˜E, L(Q∗ +U )(cos θ sin 2φ E11 + cos 2φ E12)
〉

. (4.18)

Substituting (4.11), (4.12) and (4.17) into (4.10) with Q̇ = F(Q, β), we obtain

φ̇ b(a, u) sin θ = ωb(a, u) sin θ + β
√
2 L12(θ, φ) sin θ. (4.19)

Taking ε > 0 small enough so that b(a, u) > 0 and dividing (4.19) through by
b(a, u) sin θ , for β sufficiently small we have φ̇ > ω/2 for θ �= 0 and we observe
that φ̇ extends smoothly to θ = 0, corresponding to Q ∈ N ∗.

Consequently in (θ, φ,U ) coordinates for sufficiently small |β| and |u| the flow
has positive component in the φ direction. Since O (given by u = 0) in invariant
under the flow of (1.2) when β = 0 and is given by φ-rotation only, it follows that
for ε and |β| sufficiently small and Q = Z +UZ ∈ U ε we can define T (Q, β) to
be the time-lapse from φ = φ0 to φ = φ 0 + 2π if Z �= Q∗ and to be T0 = 2π/ω

when Z = Q∗. ��
Now we are able to define a Poincaré map close to O and for sufficiently

small |β|.
Definition 4.2. The Poincaré map P : U ε

M × R → U ε0
M is given by

P(Q, β) := ϕT (Q,β)(Q, β) ∈ U ε0
M , (4.20)

where T (Q, β) is as defined in Proposition 4.1.

By construction, every Q ∈ U ε
M lies in Z + N Z for some Z = Z(θ, φ), where

φ is unique mod 2π provided θ �= 0, that is Z �= Q∗. Denoting φ = m(Q) we
can characterise T (Q, β) for Q /∈ Q∗ + N ∗

ε as the unique value of t close to
T0 = 2π/ω such that

m(P(Q, β)) = m
(

ϕT (Q,β)(Q, β)
) = m(Q). (4.21)

The bifurcation analysis that follows proceeds by expanding P(Q, β) in terms of
the perturbation parameter β.

4.2. First Order β-Derivatives

Differentiating (4.20) with respect to β gives

P ′(Q, β) = T ′(Q, β)F(P(Q, β), β) + (

ϕT )′
(Q, β)|T=T (Q,β), (4.22)

where here and throughout we use ′ to denote differentiation with respect to the
second component β. At (Q, β) = (Z , 0) the expression (4.22) becomes

P ′(Z , 0) = T ′(Z , 0)F(Z , 0) + (

ϕT0
)′
(Z , 0)

= T ′(Z , 0)F(Z , 0) + (

ϕ̃T0
)′
(Z), (4.23)

using (3.3). We now turn attention to evaluating T ′(Z , 0).
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Differentiating (4.21) with respect to β at (Q, β) = (Z , 0), Z �= Q∗ gives

T ′(Z , 0)Dm(Z)F(Z , 0) + Dm(Z)
(

ϕT0
)′
(Z , 0) = 0. (4.24)

By construction m(Q) = m(Z) for all Q ∈ Z + N Z and therefore Dm(Z)

annihilates N Z . Recall from Lemma 2.4 that the tangent space to M at Z is
spanned by EZ

11(0) while the tangent space to the latitude curve through Z is
spanned by EZ

12(π/2). It follows that the derivative Dm(Z) : V → R annihilates
EZ
11(0) and is an isomorphism from span{EZ

12(π/2)} to R, so that, in particular,
Dm(Z)F(Z , 0) �= 0 (4.25)

since, from (2.22), we see that

F(Z , 0) = ω[W3, Z ] = 3
√
2aω sin θEZ

12. (4.26)

We next introduce a variable that plays a central role in subsequent calculations.

Definition 4.3. y(t, Q) := (

ϕ̃t
)′
(Q, 0).

From (3.3) we see, in particular, that

y(T0, Q) = (

ϕT0
)′
(Q, 0). (4.27)

With this notation we can write (4.24) as

T ′(Z , 0)Dm(Z)F(Z , 0) + Dm(Z)y(T0, Z) = 0. (4.28)

A consequence of Assumption 4 is that the second term in (4.28) vanishes.

Lemma 4.4. Dm(Z)y(T0, Z) = 0.

Proof. Substituting QR = ϕ̃t (Q, β) into (3.1) and differentiating with respect to β

at β = 0 shows that y(t, Q) satisfies the differential equation

ẏ(t, Q) = DG(Q)y(t, Q) + ˜L(t, Q)D (4.29)

with y(0, Q) = 0 and ˜L(t, Q)D as in (3.2). Solving this equation by the usual
variation of constants formula [37] we obtain

y(t, Q) =
∫ t

0
M(t − s, Q)˜L(s, Q)Dds (4.30)

in terms of the fundamental matrix M(t, Q) as in (3.4), and so, in particular, for
each Z ∈ O ,

y(T0, Z) =
∫ T0

0

(

eλ(T0−s) pZ0 ˜L(s, Z)D + pZ1 ˜L(s, Z)D

+ eμ(T0−s) pZ2 ˜L(s, Z)D
)

ds, (4.31)

using (3.9). Hence

pZ1 y(T0, Z) = pZ1

∫ T0

0

˜L(s, Z)Dds = 0, (4.32)

as is clear from (3.2). Thus y(T0, Z) ∈ N Z and so Dm(Z)y(T0, Z) = 0 and the
lemma is proved. ��
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In view of Lemma 4.4 the expression (4.24) becomes

T ′(Z , 0)Dm(Z)F(Z , 0) = 0,

and hence, from (4.25), we arrive at the following key result:

Proposition 4.5. T ′(Z , 0) = 0 for all Z ∈ O\Q∗, and so by continuity for
all Z = O . ��
The analogous result holds for the Q-derivative DT (Q, β) at (Z , 0).

Proposition 4.6. DT (Z , 0) = 0 for all Z ∈ O.

Proof. Here differentiating (4.21) with respect to Q at (Q, β) = (Z , 0), Z �= Q∗
gives

Dm(Z)
(

(DT (Z , 0)H)F(Z , 0) + Dϕ̃T0(Z , 0)H
) = Dm(Z)H (4.33)

for H ∈ V , that is,

(DT (Z , 0)H)Dm(Z)F(Z , 0) + Dm(Z)eT0A
Z
H = Dm(Z)H, (4.34)

from (3.4) and (3.7). Since eT0A
Z
respects the splitting V = T Z ⊕N Z (see (3.9))

andDm(Z) annihilatesN Z wededuceDT (Z , 0)H = 0 for H ∈ N Z using (4.25),
while if H ∈ T Z then eT0A

Z
H = H and so also DT (Z , 0)H = 0. The result

follows for Z = Q∗ by continuity. ��

5. Lyapunov–Schmidt Reduction

Our aim in this section is to seek solutions Q = Q(β) ∈ U ε
M for sufficiently

small |β| > 0 to the equation

P(Q, β) = Q, (5.1)

where P : U ε
M × R → U ε0

M is as in (4.20), and to determine the stability of
the T (Q(β), β)-periodic orbit of (1.2) that each of these represents. Of particu-
lar interest are out-of-plane solutions, corresponding to kayaking orbits. We apply
Lyapunov–Schmidt reduction to (5.1) alongM exploiting the SO(3)-invariant tan-
gent and normal structure to O .

Lyapunov–Schmidt reduction is a fundamental tool in bifurcation theory, and
amounts to a simple application of the Implicit Function Theorem. Accounts can
be found in many texts such as [2, Sect. 5.3], [9, Sect. 4.4] , [16, Sect. 2.4],
[32, Sect. I§3], [44, Sect. I.2], [45, Sect. 2.2], [73, Sect. 3.1] and surveys [11,
38,57]. Although the method is local in origin, it can be applied globally on a
manifold on which a given vector field vanishes, or on which given mapping is the
identity, by piecing together local constructions and invoking the uniqueness clause
of the Implicit Function Theorem. This is the version we use here, which fits into
the general framework of [5,7,50] and has significant overlap with the geometric
methods of [52,53].
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Let Q ∈ N Z . Then QN = Q and QT = 0 where the suffices N , T will
denote projections to N Z ,T Z respectively. Hence (5.1) is equivalent to the pair
of equations

PN (Q, β) = QN = Q (5.2)

PT (Q, β) = QT = 0. (5.3)

When β = 0 the equation (5.2) is satisfied by Q = Z , and by (3.9) the Q-derivative

DPN (Z , 0)|N Z : N Z → N Z

has eigenvalues {eλT0 , eμT0 , eμT0} with λ,μ both nonzero, so

DPN (Z , 0)|N Z − idN Z : N Z → N Z

is an isomorphism. It follows by the Implicit Function Theorem and the (smooth)
local triviality of the normal bundle, as well as the compactness of M , that for all
sufficiently small |β| there exists a smooth section

Z 
→ σ(Z , β) ∈ N Z

of the normal bundle of O restricted to M such that for sufficiently small |β| the
map

M → U ε
M : Z 
→ Z + σ(Z , β)

has the property that

PN (Z + σ(Z , β), β) = Z + σ(Z , β) ∈ N Z (5.4)

for all Z ∈ M , with σ(Z , 0) = 0.
It therefore remains to solve the equation (5.3) along M given (5.4), that is to

solve the reduced equation or bifurcation equation

PT (Z + σ(Z , β), β) = 0 ∈ T Z (5.5)

for (Z , β) ∈ M × R and for |β| sufficiently small. Since T Z = V Z
1 =

span{EZ
11, E

Z
12} and by construction the Poincaré map P has no component in the

direction of the vector field E12, the bifurcation equation (5.5) can by Lemma 2.4
be written more specifically as

P11(Z + σ(Z , β), β) = 0, (5.6)

with P11 = pZ11P , where pZ11 denotes projection to span{EZ
11}. We thus seek the

zeros of the bifurcation function F (·, β) : M → R where

P11(Z + σ(Z , β), β) = F (Z , β)EZ
11 (5.7)

for sufficiently small |β| > 0.We shall find these by taking a perturbation expansion
of F (Z , β) in terms of β.
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5.1. Perturbation Expansion of the Bifurcation Function

First, we need a β-expansion of the Poincaré map P which we write as

P(Q, β) = P 0(Q) + βP1(Q) + β2P2(Q) + O(β3) (5.8)

for Q ∈ N Z , Z ∈ M . We also make use of the ‘approximate’ Poincaré map

P̃(Q, β) := ϕ̃T0(Q, β), (5.9)

with β-expansion

P̃(Q, β) = P̃ 0(Q) + β P̃1(Q) + β2 P̃2(Q) + O(β3), (5.10)

noting that P̃(Z , 0) = P(Z , 0) by (3.3). Although P̃ is not the same as P , the next
result shows that up to second order in β at Q = Z ∈ O it differs from P only in
the direction of the unperturbed vector field F(Z , 0).

Proposition 5.1.

P i (Z) = P̃ i (Z)

for i = 0, 1, and

P2(Z) − P̃2(Z) ∈ span{F(Z , 0)}.
Proof. Of course P 0(Z) = P̃ 0(Z) = Z , and from (4.23) we have P1(Z) =
P̃1(Z) since T ′(Z , 0) = 0 by Proposition 4.5. Next, differentiating (4.22) with
respect to β at (Q, β) = (Z , 0) we obtain

P2(Z) = 1

2
P ′′(Z , 0) = 1

2
T ′′(Z , 0)F(Z , 0) + P̃2(Z),

again using (twice) the fact that T ′(Z , 0) = 0. ��
In expanding P(Z + σ(Z , β), β) we shall require the first and second Q-

derivatives DP(Q, β) and D2P(Q, β) of P at (Q, β) = (Z , 0). Recall that the
tangent space to UM at Z ∈ M is F(Z , 0)⊥ = span{EZ

11} ⊕ N Z .

Proposition 5.2.

DP 0(Z) = DP̃ 0(Z), (5.11)

while for H, K ∈ F(Z , 0)⊥,

DP1(Z)H − DP̃1(Z)H ∈ span{F(Z , 0)} (5.12)

and

D2P 0(Z)(H, K ) − D2 P̃ 0(Z)(H, K ) ∈ span{F(Z , 0)}. (5.13)
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Proof. For H ∈ F(Z , 0)⊥ we have

DP(Q, β)H = (

DT (Q, β)H
)

F(P(Q, β), β) + Dϕt (Q, β)|t=T (Q,β)H,

(5.14)

which, at (Q, β) = (Z , 0), becomes

DP(Z , 0)H = (

DT (Z , 0)H
)

F(Z , 0) + DP̃(Z , 0)H,

giving (5.11) in view of Proposition 4.6. The expression (5.14) shows that DP
and Dϕt |t=T (Q,β) differ by a scalar multiple of F(P(Q, β), β), and moreover this
scalar multiple DT (Q, β)H vanishes when (Q, β) = (Z , 0) by Proposition 4.6.
Hence on one further differentiation both the Q-derivative and the β-derivative of
DP at (Z , 0) differ from those of Dϕt |t=T (Z ,0) = Dϕ̃T0 = DP̃ only by a scalar
multiple of F(Z , 0). Therefore D2P 0(Z) and DP1(Z) differ from D2 P̃ 0(Z) and
DP̃1(Z) respectively by scalar multiples of F(Z , 0). ��

5.2. First Order Term of the Bifurcation Function

Here we denote

P ′
11(Z , 0) := d

dβ
P11(Z + σ(Z , β), β)|β=0 = F ′(Z , 0)EZ

11,

as in (5.7), and likewise for the second derivatives.

Proposition 5.3. P ′
11(Z , 0) = 0.

Proof. Differentiating (5.6) with respect to β at β = 0 gives

P ′
11(Z , 0) = pZ11

(

DP 0(Z)σ ′(Z , 0) + P1(Z)
)

(5.15)

= pZ11M(T0, Z)σ ′(Z , 0) + pZ11 P̃
1(Z), (5.16)

using (3.4) and Proposition 5.1 for i = 0, 1. Now

pZ11M(T0, Z) = pZ11, (5.17)

by Corollary 3.5 and pZ11σ
′(Z , 0) = 0 since σ ′(Z , 0) ∈ N Z . Also P̃1(Z) =

y(T0, Z) as in (4.27), and pZ11y(T0, Z) = 0 from (4.32). Thus both terms on the
right hand side of (5.16) vanish. ��

Ageometric interpretation of Proposition 5.3 is that to first order inβ the SO(3)-
orbit O , on which every dynamical orbit (other than the fixed point Q∗) is 2π/ω

periodic, perturbs to an invariant manifold with the same dynamical property, so
that neutral stability of all periodic orbits is preserved.
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5.3. Second Order Term of the Bifurcation Function

Given that the first order term in the β-expansion of F (Z , β) vanishes by
Proposition 5.3 we turn to the second order term. Differentiating P11(Z , β) twice
with respect to β at β = 0 we obtain from the left hand side of (5.6)

P ′′
11(Z , 0) = D2P 0

11(Z)(σ ′(Z , 0))2 + 2DP1
11(Z)σ ′(Z , 0)

+DP 0
11(Z)σ ′′(Z , 0) + 2P2

11(Z), (5.18)

where we write P i
11 for p

Z
11P

i , i = 0, 1, 2.

Remark 5.4. The expression (5.18) is a particular case of the formula for the second
order term of the bifurcation function in a general setting derived in [7, Appendix
A].

To evaluate (5.18) a significant simplification can be made.

Proposition 5.5. P may be replaced by P̃ in all terms on the right hand side
of (5.18).

Proof. By Propositions 5.1 and 5.2 each term differs from its counterpart with P̃
by a scalar multiple of F(Z , 0), which is annihilated by pZ11. ��

We next investigate in turn each of the terms of (5.18) with P̃ in place of P .

5.3.1. First Q-Derivative of P̃ 0 As σ(Z , β) ∈ N Z its β-derivatives also lie in
N Z , and with DP̃ 0(Z) = M(T0, Z) it follows from (5.17) that

DP̃ 0
11(Z)σ ′′(Z , 0) = pZ11σ

′′(Z , 0) = 0. (5.19)

5.3.2. Second Q-Derivative of P̃ 0 Expanding

ϕ̃t (Q, β) = ϕ̃t
0(Q) + βϕ̃t

1(Q) + β2ϕ̃t
2(Q) + O(β3)

so that in particular ϕ̃t
0(Q) = ϕ̃t (Q, 0), we see from (3.1) with β = 0 that D2ϕ̃t

0(Q)

satisfies the equation

D2 ˙̃ϕt
0(Q) = D2G(ϕ̃t

0(Q))
(

Dϕ̃t
0(Q)

)2 + DG(ϕ̃t
0(Q))D2ϕ̃t

0(Q) (5.20)

and so we obtain from the variation of constants formula and (3.4)

D2 P̃ 0(Z) = D2ϕ̃
T0
0 (Z) =

∫ T0

0
M(T0 − s, Z)D2G(Z)

(

M(s, Z)
)2ds. (5.21)

Since σ ′(Z , 0) ∈ N Z and so by (3.9) also M(s, Z)σ ′(Z , 0) ∈ N Z = V Z
0 ⊕ V Z

2
we have

D2 P̃ 0
11(Z)(σ ′(Z , 0))2 =

∫ T0

0
pZ11D

2G(Z)
(

M(s, Z)σ ′(Z , 0)
)2ds = 0, (5.22)

usingCorollary 3.5 and the bilinear property of D2G(Z) given in PropositionA.7.1.
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5.3.3. First Q-Derivative of P̃1 By definition of the solution to (3.1) through Q
at t = 0 we have

˙̃ϕt
(Q, β) = G(ϕ̃t (Q, β)) + β˜L(t, ϕ̃t (Q, β))D. (5.23)

Differentiating with respect to β at β = 0 we obtain

˙̃ϕt
1(Q) = DG(ϕ̃t

0(Q))ϕ̃t
1(Q) + ˜L(t, ϕ̃t

0(Q))D. (5.24)

Differentiating (5.24) now with respect to Q at Q = Z gives, for H ∈ V ,

D ˙̃ϕt
1(Z)H = BZ (Dϕ̃t

0(Z)H, ϕ̃t
1(Z)) + AZ Dϕ̃t

1(Z)H

+(

D˜L(t, Z)Dϕ̃t
0(Z)H

)

D, (5.25)

with notation

BZ := D2G(Z) (5.26)

and AZ = DG(Z) as in (3.8). Now P̃1(Q) = ϕ̃
T0
1 (Q) while Dϕ̃t

0(Z) = et A
Z
and

ϕ̃t
1(Z) = y(t, Z) by Definition 4.3, so the variation of constants formula gives

DP̃1(Z)H =
∫ T0

0
e(T0−s)AZ

(

BZ (

esA
Z
H, y(s, Z)

)

+ (

D˜L(s, Z)esA
Z
H

)

D
)

ds. (5.27)

To evaluate the term involving DP̃1 in (5.18) we must next substitute H =
σ ′(Z , 0) ∈ N Z into (5.27). We write

pZT = pZ1 , pZN = pZ0 + pZ2 (5.28)

to emphasise the tangent and normal character of these projections.

Proposition 5.6.

σ ′(Z , 0) = (idN Z −eT0A
Z
N )−1yN (T0, Z), (5.29)

where AZ
N := pZN AZ |N Z (that is theN Z -block of AZ ) and yN (t, Z) := pZN y(t, Z)

with y(t, Z) as in Definition 4.3.

Proof. Differentiating (5.4) with respect to β at β = 0 yields

eT0A
Z
N σ ′(Z , 0) + P ′(Z , 0) = σ ′(Z , 0) ∈ N Z , (5.30)

by (3.9) and Proposition 5.2. This gives the result since P ′(Z , 0) = (

ϕ̃T0
)′ =

y(T0, Z) using Proposition 5.1 for i = 1. ��



David Chillingworth et al.

Nowsubstituting (5.29) for H into (5.27) and againmaking use of PropositionA.7.1
gives

DP̃1
11(Z)σ ′(Z , 0) =

∫ T0

0
BZ
11

(

esA
Z
N (idN Z −eT0A

Z
N )−1yN (T0, Z), yT (s, Z)

)

ds

+
∫ T0

0
pZ11

(

D˜L(s, Z)esA
Z
N (idN Z −eT0A

Z
N )−1yN (T0, Z)

)

D ds, (5.31)

where yT (t, Z) := pZT y(t, Z) and BZ
11 := pZ11B

Z .
Finally, to complete the evaluation of (5.18)wemake explicit the term involving

P̃2(Z) in that equation.

5.3.4. The Term P̃2(Z) An expression for P̃2(Z) is obtained by differentiat-
ing (5.23) twice with respect to β at (Q, β) = (Z , 0). We find

( ˙̃ϕt
)′(Q, β) = DG(ϕ̃(Q, β))(ϕ̃t )′(Q, β) + ˜L(t, ϕ̃t (Q, β))D

+β
(

D˜L(t, ϕ̃t (Q, β))(ϕ̃t )′(Q, β)
)

D

and so a second differentiation at (Q, β) = (Z , 0) with ϕ̃1(Z) = ϕ̃′(Z , 0) and
ϕ̃2(Z) = 1

2 ϕ̃
′′(Z , β)|β=0 gives

2 ˙̃ϕt
2(Z) = BZ (

ϕ̃t
1(Z)

)2 + 2AZ ϕ̃t
2(Z) + 2

(

D˜L(t, Z)ϕ̃t
1(Z)

)

D.

Since P̃2(Z) = ϕ̃
T0
2 (Z) the variation of constants formula yields the expression

P̃2(Z) =
∫ T0

0
M(T0 − s, Z)

(

(

D˜L(s, Z)y(s, Z)
)

D + 1

2
BZ (y(s, Z))2

)

ds

(cf. [50, f2(z) on p.577]) where M(t, Z) = et A
Z
N and y(t, Z) is as in (4.30). Then

P̃2
11(Z) =

∫ T0

0
pZ11

(

D˜L(t, Z)y(t, Z)
)

Ddt

+
∫ T0

0
BZ
11(yN (t, Z), yT (t, Z))dt, (5.32)

from Corollary 3.5 and the bilinearity property (A.8).
From (5.18) with (5.19), (5.22) and Proposition 5.3 we therefore arrive at the

following conclusion:

Proposition 5.7. We have

P11(Z + σ(Z , β), β) = β2F2(Z) + O(β3), (5.33)

where

F2(Z) = 1

2
P ′′
11(Z , 0) = pZ11DP̃1(Z)σ ′(Z , 0) + P̃2

11(Z), (5.34)

with the terms on the right hand side given by the expressions (5.31) and (5.32).
��
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Observe that (5.34) can be simplified using (5.31), (5.32) and bilinearity of BZ .
Denoting

χ(t, Z) := et A
Z
N σ ′(Z , 0) + y(t, Z) (5.35)

and decomposing as usual χ = χN + χT with the obvious notation we can re-
express (5.34) as

F2(Z) =
∫ T0

0
BZ
11

(

χN (t, Z), yT (t, Z)
)

dt +
∫ T0

0
pZ11

(

D˜L(t, Z)χ(t, Z)
)

Ddt.

(5.36)

The bifurcation function F (·, β) in (5.7) satisfies F ′(Z , 0) = 0 from Proposi-
tion 5.3 and

F ′′(Z , 0)EZ
11 = 2F2(Z),

with F2(Z) given by (5.36).

6. Explicit Calculation of the Bifurcation Function

For explicit calculation of the second order term F ′′(Z , 0) we now take Z =
Z(θ, φ) and express the bifurcation function (5.7) in terms of θ and φ. The choice
of φ is arbitrary so we expect the existence and stability results for periodic orbits
to be independent of φ, but nevertheless we retain φ at this stage as a check on the
calculations.

Up to this point our analysis has assumed little more than the SO(3)-
equivariance (that is, frame-indifference) of the vector field G and the perturbation
term L(Q)D in the system (1.2) and the fact that Q∗ is an equilibrium for the
unperturbed (β = 0) system. To proceed further and evaluate F2(Z) we now need
to make an explicit choice for the form of L(Q)D.

6.1. Choices for the Perturbing Field L(Q)D

We consider in turn the three terms comprising the field L(Q)D in (1.5), that
is

(i) Lc(Q)D = D
(ii) Ll(Q)D = [D, Q ]+
(iii) Lq Q)(D) = tr(DQ)Q,

where D as in (2.1) represents the symmetric part of the shear velocity gradient
and we recall the notation (1.4). From (2.14) we obtain

Lemma 6.1. In the co-moving coordinate frame as in Section 3.1 the perturbation
terms become respectively

(i) ˜L
c
(t, Q)D := ˜R3(−ωt)D = √

2E2(
π
4 − ωt)
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(ii) ˜L
l
(t, Q)D := ˜R3(−ωt)[D, ˜R3(ωt)Q ]+ = √

2[E2(
π
4 − ωt), Q ]+

(iii) ˜L
q
(t, Q)D := tr(D ˜R3(ωt)Q)Q = tr(˜R3(−ωt)D Q)Q = √

2 tr(E2(
π
4 −

ωt)Q)Q. ��
Taking the derivative with respect to the Q variable we obtain

Proposition 6.2. In the respective cases (i),(ii),(iii) for Q, H ∈ V

(i) D˜L
c
(t, Q)D = 0

(ii)
(

D˜L
l
(t, Q)H

)

D = √
2 [E2(

π
4 − ωt), H ]+

(iii)
(

D˜L
q
(t, Q)H

)

D = √
2 tr(E2(

π
4 − ωt)H)Q + √

2 tr(E2(
π
4 − ωt)Q)H. ��

We next need expressions for the components of E2(π/4−ωt) in the basisBZ

as in (4.2). These could formally be found using 5 × 5 Wigner rotation matrices
describing the action of SO(3) on V as in physics texts such as [68], but in our case
it will be simpler to calculate directly.

6.2. Expression of E2(π/4 − ωt) in the Vector BasisBZ

For any E2(u) and any Z = Z(θ, φ) ∈ O and Q ∈ V we have, from (2.14),

〈E2(u), ˜RzQ〉 = 〈E2(u), ˜R3(ϕ)˜R2(θ)Q〉 = 〈˜R3(−ϕ)E2(u), ˜R2(θ)Q〉
= 〈E2(u − ϕ), ˜R2(θ)Q〉. (6.1)

Calculating ˜R2(θ)Q for Q = E0, E1(α), E2(α) in turn we find by elementary
matrix multiplication

˜R2(θ)E0 = 1√
6

⎛

⎝

2 sin2 θ − cos2 θ 0 3 sin θ cos θ

0 −1 0
3 sin θ cos θ 0 2 cos2 θ − sin2 θ

⎞

⎠ (6.2)

while

˜R2(θ)E1(α) = 1√
2

⎛

⎝

cosα sin 2θ sin α sin θ cosα cos 2θ
sin α sin θ 0 sin α cos θ

cosα cos 2θ sin α cos θ − cosα sin 2θ

⎞

⎠ (6.3)

and

˜R2(θ)E2(α) = 1√
2

⎛

⎝

cos 2α cos2 θ sin 2α cos θ − cos 2α sin θ cos θ

sin 2α cos θ − cos 2α − sin 2α sin θ

− cos 2α sin θ cos θ − sin 2α sin θ cos 2α sin2 θ

⎞

⎠ .

(6.4)

Using (6.1) and elementary computation we obtain the following results needed
to compute the coefficients of ˜L(t, Q)D in the basis BZ at Z ∈ O:
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Proposition 6.3.

〈E2(u), EZ
0 〉 =

√
3

2
cos 2(u − ϕ) sin2 θ, (6.5)

while

〈E2(u), EZ
1 (α)〉 = 1

2
cos 2(u − ϕ) cosα sin 2θ + sin 2(u − ϕ) sin α sin θ (6.6)

and

〈E2(u), EZ
2 (α)〉 = 1

2
cos 2(u − ϕ) cos 2α(1 + cos2 θ)

+ sin 2(u − ϕ) sin 2α cos θ. (6.7)

��

Using Proposition 6.3 we see that E2(π/4 − ωt) is expressed in terms of the
orthonormal basisBZ as follows:

Corollary 6.4.

E2(
π
4 − ωt) = cZ01E

Z
0 + cZ11E

Z
11 + cZ12E

Z
12 + cZ21E

Z
21 + cZ22E

Z
22, (6.8)

where the coefficients cZ01 etc. depending on (t, θ, φ) are given by

cZ01 = c01(θ) sin(2ωt + 2φ)

cZ11 = c11(θ) sin(2ωt + 2φ)

cZ12 = c12(θ) cos(2ωt + 2φ)

cZ21 = c21(θ) sin(2ωt + 2φ)

cZ22 = c22(θ) cos(2ωt + 2φ),

and where

(

c01(θ), c11(θ), c12(θ), c21(θ), c22(θ)
)

= 1

2

(
√
3 sin2 θ, sin 2θ, 2 sin θ, (1 + cos2 θ), 2 cos θ

)

.

(6.9)

��
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6.3. Calculation of y(t, Z)

Armed with these coefficients we are now in a position to calculate y(t, Z)

and subsequently χ(t, Z), needed in order to evaluate (5.36). We consider in turn
the three cases (i),(ii) and (iii) of Section 6.1, denoting the corresponding y by
yc, yl , yq , respectively.
Case (i): ˜L(t, Q)D = ˜L

c
(t, Q)D = √

2E2(
π
4 − ωt)

From (4.30) and using (3.9) we have

yc(t, Z) = √
2

∫ t

0
eλ(t−s) pZ0 E2(

π
4 − ωs)ds + √

2
∫ t

0
pZ1 E2(

π
4 − ωs)ds (6.10)

+ √
2

∫ t

0
eμ(t−s) pZ2 E2(

π
4 − ωs)ds. (6.11)

For convenience we now introduce the polar coordinate notation

(ν, 2ω) = rν(cos 2γν, sin 2γν) (6.12)

for ν = λ,μ, as well as the abbreviations

S(t, φ, ν) : =
∫ t

0
eν(t−s) sin(2ωs + 2φ)ds

= 1

rν

(

eνt sin(2φ + 2γν) − sin(2ωt + 2φ + 2γν)
)

(6.13)

C(t, φ, ν) : =
∫ t

0
eν(t−s) cos(2ωs + 2φ)ds

= 1

rν

(

eνt cos(2φ + 2γν) − cos(2ωt + 2φ + 2γν)
)

, (6.14)

with the limiting cases

S(t, φ, 0) = 1

2ω
(cos 2φ − cos(2ωt + 2φ)) (6.15)

C(t, φ, 0) = 1

2ω
(sin(2ωt + 2φ) − sin 2φ). (6.16)

The cases when t = T0 = 2π/ω will also be important:

S(T0, φ, ν) = 1

rν
(eνT0 − 1) sin(2φ + 2γν) (6.17)

C(T0, φ, ν) = 1

rν
(eνT0 − 1) cos(2φ + 2γν). (6.18)

Using these we obtain from Corollary 6.4 the following expression for yc(t, Z) in
terms of the basis BZ :
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Proposition 6.5. We have

yc(t, Z) = yc01E
Z
0 + yc11E

Z
11 + yc12E

Z
12 + yc21E

Z
21 + yc22E

Z
22, (6.19)

where

yc01 = √
2c01(θ)S(t, φ, λ)

yc11 = √
2c11(θ)S(t, φ, 0)

yc12 = √
2c12(θ)C(t, φ, 0)

yc21 = √
2c21(θ)S(t, φ, μ)

yc22 = √
2c22(θ)C(t, φ, μ).

Proof. By Corollary 6.4 and (6.11),

yc01 = 〈yc(t, Z), EZ
0 〉 = √

2
∫ t

0
eλ(t−s)〈E2(

π
4 − ωs), EZ

0 〉ds

= √
2

∫ t

0
eλ(t−s)c01(θ) sin(2ωs + 2φ)ds = √

2c01(θ)S(t, φ, λ)

and

yc11 = 〈yc(t, Z), EZ
11〉 = √

2
∫ t

0
〈E2(

π
4 − ωs), EZ

11〉ds

= √
2

∫ t

0
c11(θ) sin(2ωs + 2φ)ds = √

2c11(θ)S(t, φ, 0).

The calculations for yc12, y
c
21 and yc22 are very similar. ��

Case (ii): ˜L(t, Q)D = ˜L
l
(t, Q)D = √

2[E2(
π
4 − ωt), Q ]+

˜L
l
(t, Z)D = √

2[E2(
π
4 − ωt), Z ]+

= √
2(2acZ01E

Z
0 + acZ11E

Z
11 + acZ12E

Z
12 − 2acZ21E

Z
21 − 2acZ12E

Z
22),

(6.20)

since Proposition A.2 shows that ˜L
l
(t, Z)D differs from ˜L

c
(t, Z)D only in that

the coefficients of EZ
0 , EZ

1 (α), EZ
2 (α) are multiplied by 2a, a,−2a respectively.

Hence in this case the result is the following:

Proposition 6.6. The components of yl are given by

(yl0(t, Z), yl1(t, Z), yl2(t, Z)) = (2a yc0(t, Z), a yc1(t, Z),−2a yc2(t, Z)), (6.21)

where yi denotes pZi y, i = 0, 1, 2. ��
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Case (iii): ˜L(t, Q)D = ˜L
q
(t, Q)D = √

2tr(E2(
π
4 − ωt)Q) Q

In this case

˜L
q
(t, Z)D = √

2tr(E2(
π
4 − ωt)Z)Z = 3

√
6a2 sin(2ωt + 2φ) sin2 θEZ

0 ,

(6.22)

using (6.5), and so

yq(t, Z) = yq0 = yq01E
Z
0 , (6.23)

where

yq01 = 3
√
6 a2 sin2 θ

∫ t

0
eλ(t−s) sin(2ωs + 2φ)ds (6.24)

= 3
√
6 a2 sin2 θ S(t, φ, λ) = 6a2 yc01, (6.25)

from (6.19). Thus

(yq0 (t, Z), yq1 (t, Z), yq2 (t, Z)) = 6a2(yc0(t, Z), 0, 0). (6.26)

6.4. Calculation of χ(t, Z)

From (5.29) and (5.35) we have

χ(t, Z) = et A
Z
N (idN Z −eT0A

Z
N )−1yN (T0, Z) + y(t, Z), (6.27)

where we recall yN = y0 + y2. Again we consider in turn the cases (i),(ii) and (iii),
using respective notation χc, χ l , χq .
Case (i): ˜L

c
(t, Q)D = √

2E2(π/4 − ωt)
Here

χc
0 (t, Z) = eλt (1 − eλT0)−1yc0(T0, Z) + yc0(t, Z) (6.28)

and using Proposition 6.5 with (6.13) and (6.17) we find

χc
0 (t, Z) = −√

2 eλt c01(θ)
1

rλ
sin(2φ + 2γλ) E

Z
0

+ √
2 c01(θ)

1

rλ

(

eλt sin(2φ + 2γλ) − sin(2ωt + 2φ + 2γλ)
)

EZ
0

giving

χc
0 (t, Z) = −√

2 c01(θ)
1

rλ
sin(2ωt + 2φ + 2γλ) E

Z
0 . (6.29)

Likewise

χc
2 (t, Z) = eμt (1 − eμT0)−1yc2(T0, Z) + yc2(t, Z) (6.30)
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which gives using (6.14) and (6.18) as well

χc
2 (t, Z) = −√

2 c21(θ)
1

rμ
sin(2ωt + 2φ + 2γμ)EZ

21

− √
2 c22(θ)

1

rμ
cos(2ωt + 2φ + 2γμ)EZ

22, (6.31)

while the definition (5.35) gives

χc
1 (t, Z) = yc1(t, Z) = √

2 c11(θ)S(t, φ, 0)EZ
11 + √

2 c12(θ)C(t, φ, 0)EZ
12

(6.32)

from Proposition 6.5.

Case (ii): ˜L
l
(t, Q)D = √

2[E2(π/4 − ωt), Q ]+
Since χ is linear in y (see (6.28)) we immediately deduce from Proposition 6.6

the relations

(χ l
0(t, Z), χ l

1(t, Z), χ l
2(t, Z)) = (2aχc

0 (t, Z), aχc
1 (t, Z),−2aχc

2 (t, Z)).

(6.33)

Case (iii): ˜L
q
(t, Q)D = √

2tr(E2(π/4 − ωt)Q) Q
Again since χ is linear in y it follows from (6.26) that

(χ
q
0 (t, Z), χ

q
1 (t, Z), χ

q
2 (t, Z)) = (6a2χc

0 (t, Z), 0, 0). (6.34)

6.5. The Bifurcation Function

We are now ready to calculate the terms appearing in the expression (5.36) that
determine the bifurcation function. With yT = y1 and χN = χ0 + χ2 the first term
is

∫ T0

0
BZ
11

(

χN (t, Z), y1(t, Z)
)

dt

=
∫ T0

0
BZ
11

(

χ0(t, Z), y1(t, Z)
)

dt +
∫ T0

0
BZ
11

(

χ2(t, Z), y1(t, Z)
)

dt.

(6.35)

We evaluate this initially for χc
N , yc1 and then use (6.21),(6.26),(6.33) and (6.34) to

evaluate (6.35) with

y1 = mcy
c
1 + ml y

l
1 + mq y

q
1 and (6.36)

χi = mcχ
c
i + mlχ

l
i + mqχ

q
i for i = 0, 2, (6.37)
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using the bilinearity of BZ . Substituting χc
0 (t, Z) from (6.29) and using Proposi-

tion 6.5 and Corollary A.11, we find that

∫ T0

0
BZ
11

(

χc
0 (t, Z), yc1(t, Z)

)

dt

= −
√
2

rλ
c01(θ) BZ

11

(

EZ
0 ,

∫ T0

0
sin(2ωt + 2φ + 2γλ)y

c
1(t, Z)dt

)

= − 1

a
√
3rλ

c01(θ)λ

∫ T0

0
yc11 sin(2ωt + 2φ + 2γλ)dt E

Z
11

= −
√
2

a
√
3rλ

c01(θ)λc11(θ)

∫ T0

0
sin(2ωt + 2φ + 2γλ)S(t, φ, 0)dt E Z

11

= T0√
6a

τλc01(θ)c11(θ) EZ
11, (6.38)

since, by (6.15),

∫ T0

0
sin(2ωt + 2φ + 2γλ)S(t, φ, 0)dt

= − 1

2ω

∫ T0

0
sin(2ωt + 2φ + 2γλ) cos(2ωt + 2φ)dt

= − 1

4ω

∫ T0

0

(

sin(4ωt + 4φ + 2γλ) + sin 2γλ

)

dt,

and sin 2γλ = 2ω/rλ as in (6.12). Here we have introduced the notation

τν := ν/r2ν

for ν = λ,μ.
Likewise, from (6.31), with Proposition 6.5 and Corollary A.11, we have

∫ T0

0
BZ
11

(

χc
2 (t, Z), yc1(t, Z)

)

dt

= −
√
2

rμ
c21(θ) BZ

11

(

EZ
21,

∫ T0

0
sin(2ωt + 2φ + 2γμ)yc1(t, Z)dt

)

−
√
2

rμ
c22(θ) BZ

11

(

EZ
22,

∫ T0

0
cos(2ωt + 2φ + 2γμ)yc1(t, Z)dt

)

=
√
2μ

3arμ
c21(θ)c11(θ)

∫ T0

0
sin(2ωt + 2φ + 2γμ)S(t, φ, 0)dt E Z

11

+
√
2μ

3arμ
c22(θ)c12(θ)

∫ T0

0
cos(2ωt + 2φ + 2γμ)C(t, φ, 0)dt E Z

11

= − T0

3
√
2a

τμ

(

c21(θ)c11(θ) + c22(θ)c12(θ)
)

EZ
11, (6.39)
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using

∫ T0

0
cos(2ωt + 2φ + 2γμ)C(t, φ, 0)dt

= 1

2ω

∫ T0

0
cos(2ωt + 2φ + 2γμ) sin(2ωt + 2φ)dt

= 1

4ω

∫ T0

0

(

sin(4ωt + 4φ + 2γλ) − sin 2γλ

)

dt.

Observe that as anticipated the expressions (6.38) and (6.39) do not depend on the
meridianal angle φ.

We now turn to the second term appearing in the expression (5.36) for the
bifurcation function, namely

∫ T0

0
pZ11

(

D˜L(t, Z)χ(t, Z)
)

D dt. (6.40)

For Case (i) with L = Lc of course DLc = 0 and so we focus on Case (ii) with
L = Ll . Proposition 6.2 (ii) and Corollary 6.4 together with Proposition A.8 give

pZ11
(

D˜L
l
(t, Z)χ(t, Z)

)

D = √
2pZ11[E2(

π
4 − ωt), χ(t, Z)]+

=
(

1√
3
(χ01c

Z
11 + χ11c

Z
01) + (χ11c

Z
21 + χ21c

Z
11 + χ22c

Z
12 + χ12c

Z
22)

)

EZ
1 (0),

(6.41)

where χ01 = χ01(t, Z) etc. denote the coefficients of χ(t, Z) in the basisBZ . We
now take χ = χc and evaluate (6.40) by integrating (6.41) from t = 0 to t = T0.
Straightforward trigonometrical integrals using (6.29) and Corollary 6.4 give

∫ T0

0
χc
01c

Z
11 dt =

∫ T0

0
(−

√
2

rλ
c01(θ) sin(2ωt + 2φ + 2γλ))(c11(θ) sin(2ωt + 2φ))dt

= − T0√
2
τλc01(θ)c11(θ), (6.42)

since λ = rλ cos 2γλ. Moreover, by (6.32) and Corollary 6.4

∫ T0

0
χc
11c

Z
01dt = √

2c11(θ)c01(θ)

∫ T0

0
S(t, φ, 0) sin(2ωt + 2φ)dt = 0,(6.43)

and also,
∫ T0

0
χc
11c

Z
21 dt = √

2c11(θ) c21(θ)

∫ T0

0
S(t, φ, 0) sin(2ωt + 2φ)dt = 0,(6.44)

while from (6.31),

∫ T0

0
χc
21c

Z
11 dt = − T0√

2
τμc21(θ)c11(θ). (6.45)
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Similarly, we find

∫ T0

0
χc
22c

Z
12 dt = − T0√

2
τμc22(θ)c12(θ) (6.46)

and
∫ T0

0
χc
12c

Z
22 dt = √

2c12(θ) c22(θ)

∫ T0

0
C(t, φ, 0) cos(2ωt + 2φ)dt

= 0. (6.47)

Thus (6.41) and (6.42)–(6.47) give

∫ T0

0
pZ11

(

D˜L
l
(t, Z)χc(t, Z)

)

D dt

= − T0√
2

(

1√
3
τλc01(θ)c11(θ) + τμ(c21(θ)c11(θ) + c22(θ)c12(θ))

)

EZ
11.

(6.48)

Using the above calculations, we can now evaluate the bifurcation function for the
term L(Q)D as a linear combination (1.5) of Cases (i),(ii),(iii). The corresponding
y term has the form

y(t, Q) = mcy
c(t, Q) + ml y

l(t, Q) + mq y
q(t, Q), (6.49)

with yc,yl and yq as in Proposition 6.5 with (6.21) and (6.23), (6.25), respectively,
while

χ(t, Q) = mcχ
c(t, Q) + mlχ

l(t, Q) + mqχ
q(t, Q), (6.50)

with the relevant components given by (6.29), (6.31), (6.32) for χc, by (6.33) for χ l

and by (6.34) for χq .
First take the restricted case mq = 0. Here we find, from (5.36), that

F2(Z) =
∑

i, j∈{c,l}
λiλ j

∫ T0

0
BZ
11

(

χ i
N (t, Z), y j

T (t, Z)
)

dt

+ ml

∑

j=c,l

∫ T0

0
pZ11

(

D˜L
l
(t, Z)χ j (t, Z)

)

Ddt, (6.51)

since D˜L
c
(t, Z) = 0. Writing the bifurcation functionF (Z , β) in coordinates as

F (Z(θ, φ), β) = f (θ, φ, β),

so that

F2(Z) = 1

2
F ′′(Z(θ, φ), 0)EZ

11 = 1

2
f ′′(θ, φ, 0)EZ

11 =: f2(θ)EZ
11, (6.52)
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and here dropping the redundant variable φ, we observe from (6.38) and (6.39) (for
BZ ) and (6.48) (for D˜L) that each term in f2(θ) is a linear combination of the two
terms:

s0(λ, θ) := T0√
6a

τλc01(θ)c11(θ) (6.53)

s2(μ, θ) := − T0

3
√
2a

τμ

(

c21(θ)c11(θ) + c22(θ)c12(θ)
)

. (6.54)

The notation here reflects the fact that it is only the components χ0 and χ2 of χ

that play any role here.
The coefficients of these arising from the various terms that appear in (6.51)

are as follows:
s0(λ, θ) s2(μ, θ)

∫ T0
0 BZ

11

(

χc
N (t, Z), ycT (t, Z)

)

dt 1 1 by (6.38),(6.39)
∫ T0
0 BZ

11

(

χc
N (t, Z), ylT (t, Z)

)

dt a a by (6.21)
∫ T0
0 BZ

11

(

χ l
N (t, Z), ycT (t, Z)

)

dt 2a −2a by (6.33)
∫ T0
0 BZ

11

(

χ l
N (t, Z), ylT (t, Z)

)

dt 2a2 −2a2 by (6.33),(6.21)
∫ T0
0 pZ11

(

D˜L
l
(t, Z)χc(t, Z)

)

D dt −a 3a by (6.48)
∫ T0
0 pZ11

(

D˜L
l
(t, Z)χ l(t, Z)

)

D dt −2a2 −6a2 by (6.33).
There collecting up terms in (6.51) gives

f2(θ) = Λ̃0 s0(λ, θ) + Λ̃2 s2(μ, θ), (6.55)

where

Λ̃0 := (m2
c + 3amcml + 2a2m2

l ) − (amcml + 2a2m2
l ) = m2

c + 2amcml (6.56)

Λ̃2 := (m2
c − amcml − 2a2m2

l ) + (3amcml − 6a2m2
l )=m2

c+2amcml−8a2m2
l .

(6.57)

Now consider terms involving mq , not yet included. Since y
q
1 = 0 from (6.26) and

χ
q
N = χ

q
0 from (6.34) the only terms that arise from BZ are

∫ T0

0
BZ
11

(

χ
q
0 (t, Z), yc1(t, Z)

)

dt = 6a2
∫ T0

0
BZ
11

(

χc
0 (t, Z), yc1(t, Z)

)

dt

= 6a2s0(λ, θ)EZ
11, (6.58)

from (6.38), and likewise, from (6.21),

∫ T0

0
BZ
11

(

χ
q
0 (t, Z), yl1(t, Z)

)

dt = 6a3s0(λ, θ)EZ
11. (6.59)

Regarding terms arising from D˜L, we have, from (6.41) and (6.34), that

(

D˜L
l
(t, Z)χq(t, Z)

)

D = 1√
3
χ
q
01c

Z
11E

Z
11 = 2

√
3a2χc

01c
Z
11E

Z
11, (6.60)
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and so
∫ T0

0
pZ11

(

D˜L
l
(t, Z)χq(t, Z)

)

Ddt = −6a3s0(λ, θ)EZ
11, (6.61)

using (6.42). Observe also that from Proposition 6.2 (iii) and (6.5), and (6.32),

∫ T0

0
pZ11

(

D˜L
q
(t, Z)χc(t, Z)

)

Ddt = √
2

∫ T0

0

〈

E2(
π
4 − ωt), Z

〉

χc
11(t, Z)EZ

11dt

=
∫ T0

0
3
√
2 a sin(2ωt + 2φ) sin2 θc11(θ)S(t, φ, 0)EZ

11dt = 0, (6.62)

as in (6.43), and so, likewise,

∫ T0

0
pZ11

(

D˜L
q
(t, Z)χ l(t, Z)

)

Ddt = 0, (6.63)

and also
∫ T0

0
pZ11

(

D˜L
q
(t, Z)χq(t, Z)

)

Ddt = 0, (6.64)

becauseχ
q
11 = 0. Thus the contribution to F2(Z) arising from theD˜L term in (5.36)

depends only on the linear (in Q) contribution Ll(Q)D.
Therefore the contribution of the mq -term in L(Q)D is merely to replace Λ̃i

in (6.56) by Λi for i = 0, 2 where

Λ0 = m2
c + 2amcml + 6a2mcmq (6.65)

and Λ2 = Λ̃2, the mlmq terms from (6.59) and (6.61) fortuitously cancelling.

7. Zeros of the Bifurcation Function, Periodic Orbits and Stability

Since, from (6.9),

c01(θ)c11(θ) =
√
3

4
sin2 θ sin 2θ (7.1)

c21(θ)c11(θ) = 1

4
(1 + cos2 θ) sin 2θ (7.2)

c22(θ)c12(θ) = sin θ cos θ = 1

2
sin 2θ, (7.3)

the expression (6.55) using Λ0,Λ2 becomes f2(θ) = T0
12

√
2a

sin 2θ ̂f2(θ), where

̂f2(θ) = 3Λ0τλ sin
2 θ − Λ2τμ(3 + cos2 θ), (7.4)

with τλ, τμ both nonzero by Assumption 3.
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Proposition 7.1. Solutions θ ∈ [0, π) to f2(θ) = 0 are given by

θ = 0,
π

2
, (7.5)

and by solutions θ to

3Λ0τλ sin
2 θ = Λ2τμ(3 + cos2 θ), (7.6)

that is (assuming Λ2 �= 0),
(

3
Λ0

Λ2

τλ

τμ

+ 1

)

sin2 θ = 4. (7.7)

��
If Λ2 = 0 then solutions θ �= 0, π

2 ∈ [0, π) to (7.6) exist only if also Λ0 = 0 in
which case f2(θ) vanishes identically. However, if Λ0 = Λ2 = 0, then

ξ2 + 2aξη + 6a2ξ = 0

ξ2 + 2aξη − 8a2η2 = 0,

where (ξ, η) = (mc/mq ,ml/mq), supposing mq �= 0 (otherwise Λ0 = Λ2 = 0
implies mc = ml = 0 also). Subtracting gives 3ξ = −4η2 and so the first equation
factors into ξ = 0 (so η = 0) or

−4/3η2 + 2aη + 6a2 = −2

3
(2η + 3a)(η − 3a) = 0,

giving (ξ, η) = (−3a2,−3a/2) or (−12a2, 3a). Thus Λ0 = Λ2 = 0 just when
(mc : ml : mq) = (0 : 0 : mq) or (−12a2 : 3a : 1) or (6a2 : 3a : −2); we exclude
these possibilities.

Therefore assuming Λ2 �= 0 there exist solutions θ �= 0, π/2 ∈ [0, π) to (7.7)
if and only if 3Λ0

Λ2

τλ

τμ
+ 1 > 4, that is Λ0

Λ2

τλ

τμ
> 1. Hence we have

Corollary 7.2. The second order term f2(θ) of the bifurcation function has no
zeros θ �= 0, π/2 ∈ [0, π) if Λ0

Λ2

τλ

τμ
≤ 1, while if Λ0

Λ2

τλ

τμ
> 1 there are two zeros

θ = π/2 ± Θ with Θ → 0 as Λ0
Λ2

τλ

τμ
→ 1. ��

In the specific case of the Beris–Edwards model (1.2) with L(Q)D given by (1.3)
with ratios

(mc : ml : mq) =
(

2

3
: 1 : −2

)

,

we observe that Λ0 = Λ2 regardless of the value of the coefficient a. It happens
that the simpler Olmsted–Goldbart model [12,61,75] for which (mc : ml : mq) =
(1 : 0 : 0) also yields Λ0 = Λ2. Thus in both these cases we have a tidier result.

Corollary 7.3. For the Beris–Edwards model and the Olmsted–Goldbart model
the second order term f2(θ) of the bifurcation function has no zeros θ �= 0, π/2 ∈
[0, π) if τλ/τμ ≤ 1, while if τλ/τμ > 1 there are two zeros θ = π/2 ± Θ with
Θ → 0 as τλ/τμ → 1. ��
These models both have mc �= 0. If mc = 0 with ml �= 0 (so L(Q)D has linear
but no constant term) then Λ0 = 0 while Λ2 �= 0 and we see from (7.6) that f2(θ)

does not vanish for any θ �= 0, π/2 mod π .
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7.1. Periodic Orbits

Since

f (θ, β) = β2( f2(θ) + O(β)), (7.8)

as in (6.52), the Implicit Function Theorem implies that if θ = θ 0 is a simple zero
of f2 then for sufficiently small |β| > 0 there exists a unique θβ close to θ 0 such
that the right hand side of (7.8) vanishes at θ = θβ and θβ → θ 0 as β → 0. Thus
θβ corresponds to a solution Zβ = Z(θβ, φ) ∈ Mφ to the bifurcation equation
F (Z , β) = 0 for sufficiently small |β| > 0 with Zβ → Z(θ 0, φ) as β → 0.

In fact we know by Proposition 3.4 that the solutions θ = 0, π/2 corresponding
to the north pole Q∗ and equator C do persist for sufficiently small |β| > 0, and
we verify that

d f2(θ)

dθ

∣

∣

∣

θ=0
= −

√
2T0
3a

Λ2τμ ,
d f2(θ)

dθ

∣

∣

∣

θ= π
2

= − T0

2
√
2a

(Λ0τλ − Λ2τμ),(7.9)

and so the north pole solution is always a simple solution, while the equator solution
is a simple solution provided Λ0τλ �= Λ2τμ. In general, if θ = θ 0 := π/2 ± Θ is
another zero of f2, then

d f2(θ)

dθ

∣

∣

∣

θ=θ 0
= T0

12
√
2a

sin2 2θ 0(3Λ0τλ + Λ2τμ)

= T0

12
√
2a

sin2 2θ 0Λ2τμ(3
Λ0τλ

Λ2τμ

+ 1), (7.10)

which is nonzero since Λ0τλ,Λ2τμ have the same sign by Corollary 7.2, and so θ 0
is also a simple solution.

When Λ0 = Λ2 as in the Beris–Edwards or Olmsted–Goldbart models we thus
have the following result on periodic orbits after perturbation.

Corollary 7.4. For theBeris–EdwardsorOlmsted–Goldbartmodels underAssump-
tions 1–4 for fixed λ,μ with τλ/τμ < 1 the equator C is the unique periodic orbit
on O (other than the equilibrium Q∗) that persists for sufficiently small |β| > 0;
its period is close to π/ω. For τλ/τμ > 1 there is, in addition, β0 > 0 and a smooth
path {Q(β) : |β| < β0} in V with Q(0) = Z(θ, φ) ∈ Mφ where θ = π/2 ± Θ

as in Corollary 7.3 such that there is a periodic orbit of (1.2) through Q(β) with
period T (Q(β), β) → T0 = 2π/ω as β → 0. ��
The perturbed equator represents a periodic orbit close to tumbling, possibly with
a small kayaking and/or biaxial component. The periodic orbit through Q(β) rep-
resents a kayaking orbit that (for fixed λ,μ) arises from a particular kayaking orbit
on O persisting after perturbation. The two values θ = π/2 ± Θ correspond to
the two intersections of the same periodic orbit with the Poincaré section: see the
geometric description at the end of Section 2.3. Thus if (sufficiently small) β �= 0
is fixed and τλ/τμ increases through 1, the equator tumbling orbit generates a
kayaking orbit through a period-doubling bifurcation.



Kayaking Orbits for Nematic Liquid Crystals in Shear Flow

7.2. Stability

So far the discussion has rested on Assumption 3 ensuring the normal hyper-
bolicity of the SO(3)-orbit O under the dynamics of the system (1.2) when β = 0.
In this section we investigate dynamical stability of the periodic orbits on O that
persist close to O for sufficiently small |β| > 0. A necessary condition for stabil-
ity is that O itself be an attracting set, and so we make now the following further
assumption:

Assumption 5. The eigenvalues λ,μ of DG(Q∗) are negative.

Consequently the perturbed flow-invariant manifold O(β) is normally hyper-
bolic and attracting for sufficiently small |β| > 0, therefore the stability of any
equilibrium or periodic orbit lying on O(β) is determined by its stability or other-
wise relative to the system (1.2) restricted toO(β). The manifoldO(β) can be seen
as the image of a section of the normal bundle ofO , its intersection withU ε

M being
the imageM (β) of a section σ̃ (·, β) of this normal bundle restricted toM = Mφ .
The 1-manifoldM (β) is invariant under the Poincaré map P(·, β), the restriction
of P(·, β) to M (β) determining a 1-dimensional discrete dynamical system on
M (β) whose fixed points correspond to periodic orbits (or fixed points) of F(·, β)

on O(β).
In our analysis, rather than use σ̃ (·, β) which is harder to compute, we have

used σ(·, β) and the method of Lyapunov–Schmidt to construct a vector field

Z 
→ P11(Z + σ(Z , β), β) = F (Z , β)EZ
11

on M whose zeros correspond to the periodic orbits (or fixed points) of F(·, β)

on O(β). It follows from the general Principle of Reduced Stability [45,74] that
stability of periodic orbits on O(β) corresponds to stability of the corresponding
zeros of the vector fieldF (Z , β)EZ

11 onM in the present contextwhere dim(M ) =
1. However, we now show this directly, using a simple geometric argument taken
from [16, Section 9.4]. Recall that in terms of the θ -coordinate for Z on M we
have F (Z , β) = f (θ, β).

Proposition 7.5. For fixedβ, let Q0(β) := Z0+σ̃ (Z0, β) ∈ M (β) be a hyperbolic
fixed point for the Poincaré map P(·, β), with Z0 = Z(θ 0, φ) for θ 0 a hyperbolic
zero of the system θ̇ = f (θ, β) onM . Then Q0(β) is stable (attracting) if and only
if θ 0 is stable (attracting).

Proof. Suppose this fails for a given fixed value of β, so that (without loss of
generality) Q(β) is attracting on M (β) while θ 0 is repelling on M . In particular
this means that there is an interval (θ−, θ 0) such that all corresponding points on
M (β) are moved to the right (greater θ -value) by the Poincaré map P(·, β), and
there is also an interval (θ 0, θ+) onwhich f (θ, β) > 0.Nowconsider a perturbation
of the system (1.2) which adds a vector field of the form Q 
→ ζ(Q)EZ

11 where
ζ : V → R is a smooth non-negative bump function with ζ(Q(β)) > 0 and
vanishing outside a sufficiently small neighbourhood U of Q(β) in V . Note that
such a perturbation will be far from SO(3)-equivariant as it is localised on U . For
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sufficiently small ζ the effect of the perturbation will be to ensure that there is a
larger open interval J− ⊃ (θ−, θ 0] on which corresponding points on M (β) are
moved to the right, while there is a larger open interval J+ ⊃ [θ 0, θ+) on which
f (θ, β) > 0. Therefore the fixed point Q(β) of the perturbed Poincaré map must
have θ -coordinate greater than θ 0, while the zero of f (·, β) is a point on M with
θ -coordinate less than θ 0. However, this contradicts the fact that fixed points of the
Poincaré map correspond to zeros of the bifurcation function via projection in the
normal bundle over M , and so proves the Proposition. ��
Corollary 7.6. Under Assumptions 1–5, if θ is a simple zero of f (·, β) then the
corresponding periodic orbit (or fixed point) of (1.2) is linearly stable or unstable
according as d f2(θ, 0)/dθ is negative or positive. ��

7.3. Stable Kayaking Orbits

We are now able to describe the global dynamics close to O for the Beris–
Edwardsmodel, under the standingAssumptions 1–5. FromCorollary 7.4 and (7.9),
(7.10) we deduce the following stability result:

Theorem 7.7. For the Beris–Edwards model first suppose Λ2 > 0. Then for
τλ/τμ < 1 and sufficiently small |β| > 0 the perturbed equator C (β) is an
attracting limit cycle (close to tumbling) on the invariant manifold O(β) that is
the perturbed SO(3)-orbit O , its basin of attraction on O(β) being the whole
of O(β) apart from the perturbed equilibrium Q∗(β) (log-rolling). For τλ/τμ > 1
the perturbed equator C (β) is a repelling limit cycle, and there is precisely one
other limit cycle on O(β): this limit cycle (kayaking) is attracting, and has period
approximately twice that of C (β). If Λ2 < 0 the attraction/repulsion is reversed.
��
For the simpler Olmsted–Goldbart model we have Λ2 = m2

c > 0 and so stability
of the kayaking orbit (when it exists) automatically holds. In general, we have

Λ2 = (mc − 2aml)(mc + 4aml),

and so the stability condition Λ2 > 0 holds precisely when w < −4a or w > 2a
where w := mc/ml , supposing ml �= 0. If ml = 0,mc �= 0 the kayaking orbit
is automatically stable if it exists, while if ml �= 0, mc = 0 there is no kayaking
orbit. For the Beris–Edwards model we have w = 2/3, and in this case stability
depends on the coefficient a and holds automatically given that a < 1/3. Thus, to
summarise, we have

Corollary 7.8. For the Beris–Edwards and Olmsted–Goldbart models, if the
SO(3)-orbit of the logrolling equilibrium Q∗ is normally hyperbolic and attracting
(so that Q∗ is a stable equilibrium state in the absence of the shear flow, up to rigid
rotations) then the kayaking orbit, when it exists, is an asymptotically stable limit
cycle.
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Remark 7.9. Given Assumption 5 the condition τλ/τμ > 1 is the same as τλ < τμ,
that is,

k(λ, μ) < 0,

where

k(λ, μ) := τλ − τμ = λr−2
λ − μr−2

μ

= r−2
μ r−2

λ

(

λ(μ2 + 4ω2) − μ(λ2 + 4ω2)
)

= r−2
μ r−2

λ (λ − μ)(4ω2 − λμ). (7.11)

Our result on kayaking orbits for the Beris–Edwards model can therefore be
expressed as follows:

Theorem 7.10. For the Beris–Edwards model (1.2), (1.3) the condition for the
existence of a kayaking orbit for sufficiently small |β| > 0 is that λ − μ and
4ω2 − λμ have opposite signs; such a kayaking orbit is automatically linearly
stable given that a < 1/3 for physical reasons (see (2.2)). ��

7.4. The Gradient Case

In the Beris–Edwards model and others widely used in the literature the equiv-
ariant interaction field G is the negative gradient of a smooth free energy function
V → R which is frame-indifferent, thus invariant under the action of SO(3) on V .
From general theory [71], such a function has the form

Q 
→ f (X1(Q), X2(Q), . . . , Xm(Q))

where f : Rm → R is a smooth function and {X1, X2, . . . , Xm} are a basis for
the ring of SO(3)-invariant polynomials on V . It is well known in the liquid crystal
literature (see for example [52, eq.(4.9)]) that such a basis is given by {X,Y }, where

X (Q) = tr Q2, Y (Q) = tr Q3,

a proof being given in [33, Ch.XV, §6] via reduction to the group of symmetries of
an equilateral triangle. Note that for Q ∈ V the Cayley–Hamilton Theorem shows
immediately that tr Q3 = 3 det Q.

With fX , fY denoting the partial derivatives of f we find that the functions g, ḡ
of (A.9) are then given by

g(Q) = −2 fX (Q), ḡ(Q) = −3

2
fY (Q), (7.12)

and so, for their derivatives,

Dg = −2D fX , Dḡ = −3

2
D fY . (7.13)

The equilibrium condition (A.10) is

2 f ∗
X + 3a f ∗

Y = 0, (7.14)
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where f ∗
X , f ∗

Y denote fX (Q∗), fY (Q∗) respectively. The eigenvalues of DG(Q∗)
are λ,μ and 0 where by (A.14) and (A.15),

λ = 2 f ∗
X − 2Δ f ∗

X − 3a Δ fY ∗ (7.15)

μ = −2 f ∗
X + 6a f ∗

Y = −6 f ∗
X = 9a f ∗

Y , (7.16)

withΔ f ∗
X := D fX (Q∗)Q∗ and likewiseΔ f ∗

Y . For the particular and important case
of the Landau - de Gennes potential

f (X,Y ) := 1

2
τ X − 1

3
bY + 1

4
cX2 (7.17)

in which b, c > 0, we have

G(Q) = −2 fX Q − 3

2
fY [Q, Q]+ (7.18)

= −(τ + c|Q|2) Q + b

2
[Q, Q]+ (7.19)

and

f ∗
X = 1

2
τ + 1

2
c|Q∗|2 = 1

2
τ + 3ca2, f ∗

Y = −1

3
b (7.20)

giving

Δ f ∗
X = c

〈

Q∗, Q∗〉 = 6a2c, Δ f ∗
Y = 0. (7.21)

The equilibrium condition (7.14) is thus that the coefficient a > 0 should satisfy

τ + 6a2c − ab = 0, (7.22)

and the eigenvalues λ,μ are given by

λ = 2τ − ab = ab − 12a2c, μ = −3ab. (7.23)

Here μ is automatically negative, and it is straightforward to check that (7.22)
has two real solutions 0 < a1 < a2 provided 0 < τ < b2/(24c). Then a2 >
1
2 (a1 + a2) = b/(12c), and so λ < 0 for a = a2 and we choose a = a2 in the
definition of Q∗.

Corollary 7.11. In this setting the result of Theorem 7.10 giving the condition for
the existence of kayaking orbits becomes

(

(a + 3)b − 12a2c
)(

4ω2 + 3b(ab − 12a2c)
)

< 0, (7.24)

with stability for a = a2 < 1/3. ��
It is natural to ask for what range of values of b, c, τ and ω these conditions can
simultaneously hold.
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Proposition 7.12. A necessary condition for the existence of stable kayaking orbits
is b < 4c. Given that this holds, if 5b < 2c such orbits exist for all ω > 0 while if
5b > 2c, they exist for

4ω2 < b(4c − b).

The range of τ or which these orbits exist is given by

1

3
(b − 2c) < τ < b2/(24c). (7.25)

Proof. From (7.23) the condition λ < 0 is a > b/(12c) given that a > 0, so the
condition a < 1/3 for stability (and physicality) implies b < 4c. Then

a2 ∈ J0 := (b/(12c), 1/3),

and this corresponds to (7.25) since τ(a) := ab − 6a2c is monotonic decreasing
on J0 (its maximum is at a = b/(12c)) and we have τ(1/3) = (b − 2c)/3 while
τ(b/(12c)) = b2/(24c). With the notation

Ξ(a) = 3b + ba − 12ca2 (7.26)

Ω(a) = 12a2c − ba, (7.27)

the kayaking condition (7.24) is

Ξ(a)(4ω2/(3b) − Ω(a)) < 0, (7.28)

since Ξ(a) + Ω(a) = 3b may be written as

(3b − Ω(a))(4ω2/(3b) − Ω(a)) < 0. (7.29)

This holds if and only if Ω(a) lies in the open interval J1 bounded by 3b and
4ω2/(3b), so the condition for the existence of a stable kayaking orbit (for some
choice of τ ) is, therefore,

Ω(J0) ∩ J1 �= ∅. (7.30)

Now Ω(b/(12c)) = 0 and Ω(1/3) = (4c − b)/3 > 0, and so

Ω(J0) = (0,
1

3
(4c − b)),

hence (7.30) holds if and only if

1

3
(4c − b) > min{3b, 4ω2/(3b)}. (7.31)

Observe that

3b − 1

3
(4c − b) = 2

3
(5b − 2c),

and so, if 5b < 2c, then (7.31) automatically holds (regardless of ω), while if
5b > 2c, the condition (7.31) is

(4c − b) > 4ω2/b i.e. b(4c − b) > 4ω2, (7.32)

as stated. ��
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8. Conclusion

The geometry of uniaxial and biaxial nematic liquid crystal phases is most
naturally expressed in terms of the action of the rotation group SO(3) on the 5-
dimensional space V of (symmetric, traceless) Q-tensors. In this paper we have
used techniques from bifurcation theory related to symmetry, applied to a rather
general class of ODEs on V widely used to model a homogeneous nematic liquid
crystal in a simple shear flow, in order to prove the existence under certain conditions
of an asymptotically stable limit cycle representing a ‘kayaking’ orbit, where the
principal axis of molecular orientation of the ensemble of rigid rods lies out of the
shear plane and rotates periodically about the vorticity axis. Our key assumption,
however, is that the dynamical effect of the symmetric part of the flow-gradient
tensor should be small compared to that of the anti-symmetric (rotational) part,
so that the system we study is viewed as a perturbation of the co-rotational case
which involves only the (frame-indifferent) molecular interaction field in addition
to the rotation of the fluid. The results require expansion to second order in the
perturbation parameter, as a consequence of the assumed linearity of the molecular
aligning effect of the flow in terms of its velocity gradient. In cases where the
molecular interaction field is the negative gradient of a free energy function, such
as the Landau-de Gennes fourth order potential, we give explicit criteria on the
coefficients to ensure the existence of the stable kayaking orbit for sufficiently
small contribution from the symmetric part of the flow gradient. The admissible
size of this contribution is not estimated, so that care must be taken in interpreting
experimental or numerical verification.
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A. Equivariant Maps and Vector Fields

Amap (vector field)G : V → V is equivariant (sometimes called covariant) with respect to
a subgroup 
 of SO(3) (or 
-equivariant) when it respects all the symmetries represented
by 
, that is,

G(˜RQ) = ˜RG(Q) (A.1)

for all R ∈ 
 and all Q ∈ V . Differentiating (A.1) with respect to Q gives

DG(˜RQ)˜R = ˜RDG(Q) : V → V . (A.2)

Thus DG(˜RQ) is conjugate to DG(Q) so they have the same eigenvalues, while ˜R takes the
eigenvectors of DG(Q) to those of DG(˜RQ). In particular if Q is fixed by the subgroup 

of SO(3) then (A.2) reads as

DG(Q)˜R = ˜RDG(Q) (A.3)

for R ∈ 
, so the linear map DG(Q) : V → V is also 
-equivariant.
Differentiating (A.2) with respect to Q gives the expression

D2G(˜RQ)(˜RH, ˜RK ) = ˜RD2G(Q)(H, K ) (A.4)

for H, K ∈ V and R ∈ SO(3). Therefore in the case when Q is fixed by the subgroup 
 of
SO(3) the bilinear map B = D2G(Q) is 
-equivariant in the sense that

B(˜RH, ˜RK ) = ˜RB(H, K ) (A.5)

for all H, K ∈ V and R ∈ 
.

Example A.1. LetG 0 : V → V be the SO(3)-equivariant map Q 
→ Q2− 1
3 tr(Q

2)I . Here

DG 0(Q)H = [Q, H ]+ for H ∈ V , with the notation as in (1.4). Each Z ∈ O is fixed by
z
and so the linear map from V to V , given by H 
→ [Z , H ]+ is 
z-equivariant. It therefore
respects the isotypic decomposition (2.8) of V into 
z-invariant eigenspaces of [Z , · ]+,
with eigenvalues independent of Z ∈ O .

Using the characterisations of {V ∗
i } given by (2.9)–(2.11) it is straightforward to calculate

the corresponding eigenvalues for Z = Q∗ and hence for all Z ∈ O .

Proposition A.2. For Z ∈ O the eigenvalues for [Z , · ]+ corresponding to the eigenspaces
V Z
0 , V Z

1 , V Z
2 are respectively

2a , a , −2a .

��

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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A.1. Bilinear Maps

From (2.14) and equivariance it follows that the element Rz(π) ∈ 
z acts on each isotypic
component V Z

i by

Rz(π)vi = (−1)ivi

for vi ∈ V Z
i , i = 0, 1, 2, and so from (A.5) we see that any 
z-equivariant bilinear map

B : V × V → V = V Z
0 ⊕ V Z

1 ⊕ V Z
2 satisfies

˜Rz(π)B(vi , v j ) = B((−1)ivi , (−1) jv j )

= (−1)i+ j B(vi , v j ).

Thus ˜Rz(π) fixes B(vi , v j )when i + j is even and multiplies it by−1 when i + j is odd. As
a consequence we have the following result, extremely useful for simplifying calculations:

Proposition A.3. For vi ∈ V Z
i , i = 0, 1, 2

B(vi , v j ) ∈ V Z
0 ⊕ V Z

2 , i + j even, (A.6)

∈ V Z
1 , i + j odd. (A.7)

��
Corollary A.4. If Qi denotes the component of Q in V Z

i , i = 0, 1, 2, then for H, K ∈ V

the component B1 of B in V Z
1 is given by

B1(H, K ) = B(H1, K0 + K2) + B(H0 + H2, K1). (A.8)

��
Corollary A.5. The result (A.8) applies to B = D2G(Q) for any SO(3)-equivariant G :
V → V when Q is fixed by 
z. In particular it applies in the case of the quadratic map
G 0 : Q 
→ Q2− 1

3 tr(Q
2)I of Example A.1wherewe have B(H, K ) = D2G 0(Q)(H, K ) =

[H, K ]+ independent of Q. ��

A.2. Specific Form of G

It is a standard result from group representation theory that a basis for the module of smooth
SO(3)-equivariant vector fields over the ring of smooth SO(3)-invariant functions on V is
given by the pair of vector fields

{ Q, [Q, Q ]+}
(see [33, XV,Section 6 ] for example); in other words any smooth SO(3)-equivariant map
(or vector field) G : V → V may be written in the form

G(Q) = g(Q) Q + ḡ(Q) [Q, Q ]+, (A.9)

where g, ḡ : V → R are smooth SO(3)-invariant functions. Thus G is completely deter-
mined once the two functions g and ḡ are chosen.
The condition for Q = Q∗ to be a zero of G is

0 = G(Q∗) = g(Q∗)Q∗ + ḡ(Q∗)[Q∗, Q∗]+ = (

g(Q∗) + 2aḡ(Q∗)
)

Q∗,

using Proposition A.2, that is,

ĝ(Q∗) = 0, (A.10)

where ĝ := g + 2aḡ.
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A.2.1. First Derivative of G Differentiating (A.9) we have for any Q, H ∈ V

DG(Q)H = Dg(Q)H Q + g(Q)H + Dḡ(Q)H [Q, Q ]+
+2ḡ(Q)[Q, H ]+. (A.11)

Therefore

DG(Q∗)Q∗ = λQ∗, (A.12)

where

λ = g(Q∗) + 4aḡ(Q∗) + (

Dg(Q∗) + 2aDḡ(Q∗)
)

Q∗. (A.13)

With G(Q∗) = 0, this gives

λ = 2aḡ∗ + Δg∗ + 2aΔḡ∗ = 2aḡ∗ + Δĝ∗, (A.14)

using Proposition A.2 and (A.10), where g∗ denotes g(Q∗) and Δg∗ := Dg(Q∗)Q∗ etc..
Likewise, from (A.11), we find that

DG(Q∗)E2(α) = μE2(α),

where

μ = g∗ − 4aḡ∗ = 3g∗ = −6aḡ∗, (A.15)

taking account of the fact that Dg(Q∗)E2(α) = Dḡ(Q∗)E2(α) = 0 by Proposition 2.2.
Also,

DG(Q∗)E1(α) = g∗E1(α) + 2ḡ∗[Q∗, E1(α)]+ = ĝ∗ E1(α) = 0,

using (A.10) and Proposition A.2, the result expected since T ∗ =
span{E1(α)}α∈[0,π). In summary we have

Proposition A.6. Theeigenvalues ofDG(Q∗) corresponding to the eigenspaces V ∗
0 , V ∗

1 , V ∗
2

are λ, 0, μ respectively, with λ,μ given by (A.14) and (A.15). ��
A.2.2. Second Derivative of G Differentiating (A.11) again, we have, for H, K ∈ V ,

D2G(Q)(H, K ) = D2g(Q)(H, K ) Q + (

Dg(Q)H
)

K + (

Dg(Q)K
)

H

+ 2
(

Dḡ(Q)H
)[Q, K ]+ + 2

(

Dḡ(Q)K
)[Q, H ]+

+ D2 ḡ(Q)(H, K ) [Q, Q ]+ + 2ḡ(Q) [H, K ]+. (A.16)

In the main text we need to evaluate the component of this expression tangent to the SO(3)-
orbit O of the uniaxial matrix Q∗ at points Z ∈ O . Here we calculate this for Z = Q∗
making significant use of Proposition A.3 and Corollary A.5, and will be able to transfer the
result to a general Q = Z ∈ O by applying the SO(3) action.
Let G1 denote the component of G in V ∗

1 , and write B1 = D2G1(Q
∗).

Proposition A.7.
1. If H, K ∈ V ∗

0 ⊕ V ∗
2 or H, K ∈ V ∗

1 , then

B1(H, K ) = 0. (A.17)
2. If H = H0 + H2 ∈ V ∗

0 ⊕ V ∗
2 and K = K1 ∈ V ∗

1 , then

B1(H0 + H2, K1) = (

Dg(Q∗)H0
)

K1 + 2
(

Dḡ(Q∗)H0
)[Q∗, K1]+

+ 2ḡ∗[H0 + H2, K1]+
= (

Dĝ(Q∗)H0
)

K1 + 2ḡ∗[H0, K1]+ + 2ḡ∗[H2, K1]+. (A.18)

Proof. The result (1) is immediate from Corollary A.4. Part (2) follows from (A.16), using
the fact that Q∗ and [Q∗, Q∗]+ lie in V ∗

0 , together with Proposition 2.2 applied to the
SO(3)-invariant functions g and ḡ. For the term involving [Q∗, K1]+ we use the eigenvalue
result from Proposition A.2. ��
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A.3. Explicit Expression for [H, K ]+1
Finally, an explicit expression for the V ∗

1 -component [H, K ]+1 of [H, K ]+ is needed in order
to evaluate the bifurcation function (5.36). Using the identity

[E2(α), E1(α
′)]+ = 1√

2
E1(2α − α′), (A.19)

we see that

[E21, E11]+ = [E22, E12]+ = 1√
2
E11 (A.20)

[E22, E11]+ = 1√
2
E12, [E21, E12]+ = − 1√

2
E12, (A.21)

since E1(−π/2) = −E1(π/2) from (2.12). Then, writing

H = (h01, h11, h12, h21, h22) (A.22)
K = (k01, k11, k12, k21, k22) (A.23)

with respect to the basis B∗ for V as given by (4.1), we find that

[H2, K1]+ = [

h21E21 + h22E22 , k11E11 + k12E12
]+

= 1√
2
(h21k11 + h22k12)E11 + 1√

2
(h22k11 − h21k12)E12 (A.24)

using (A.20) and (A.21). We therefore arrive at the following:

Proposition A.8. For H, K as in (A.22), (A.23)

[H, K ]+1 =
(

1√
6
(h01k11 + h11k01) + 1√

2
(h11k21 + h21k11 + h22k12 + h12k22)

)

E11

+
(

1√
6
(h01k12 + h12k01) + 1√

2
(h11k22 + h22k11 − h12k21 − h21k12)

)

E12.

Proof. Let H = H0 + H1 + H2, K = K0 +K1 +K2 with Hi , Ki ∈ V ∗
i , i = 0, 1, 2. Using

Corollary A.5 we see that

[H, K ]+1 = [H0 + H2, K1]+ + [H1, K0 + K2]+.

Since H0 = h01E
Z
0 = 1√

6a
h01Z it follows from Proposition A.2 that [H0, K1]+ =

1√
6
h01K1. We then use (A.24) to obtain

[H0 + H2, K1]+ = [H0, K1]+ + [H2, K1]+

= 1√
6
h01(k11E11 + k12E12) + 1√

2
(h21k11 + h22k12)E11

+ 1√
2
(h22k11 − h21k12)E12.

Exchanging the roles of H and K gives the result. ��
Corollary A.9. By SO(3)-equivariance the same formula applies to give the V Z

1 -component
of [H, K ]+, the coordinates (A.22), (A.23) in this case being taken with respect to the
basis BZ . ��
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We can now be even more specific: the expression (A.18) simplifies to

B1(H0 + H2, K1) = h01
(

Dĝ(Q∗)E0
)

K1 +
√
2√
3
h01 ḡ

∗K1 + 2ḡ∗[H2, K1]+

= λ√
6a

h01K1 − μ

3a
[H2, K1]+, (A.25)

using (A.14) and (A.15). Thus we conclude the following from Proposition A.7, (A.25) and
(A.24):

Proposition A.10. For H = HT + HN and K = KT + KN ∈ V = V ∗
1 ⊕ (

V ∗
0 ⊕ V ∗

2

)

and

B1 = D2G1(Q
∗), we have

B1(HN , KT ) = κ1E11 + κ2E12, (A.26)

where, with notation as in (A.22), (A.23),

κ1 = λ√
6a

h01k11 − μ

3
√
2a

(h21k11 + h22k12) (A.27)

κ2 = λ√
6a

h01k12 − μ

3
√
2a

(h22k11 − h21k12). (A.28)

��
Corollary A.11. By SO(3)-equivariance the same expressions (A.27), (A.28) apply relative
to the decomposition V = V Z

1 ⊕ (

V Z
0 ⊕ V Z

2

)

. ��
It is only κ1 that we need in the calculation of the bifurcation function.

B. General Form for L(Q)D

The term L(Q)D in (1.2) representing the effect on the dynamics of Q from the symmetric
part D of the flow velocity gradient is SO(3)-equivariant in (Q, D) and linear in D. From
the expression in [67, §40] giving the general form of an SO(3)-equivariant (isotropic)
polynomial matrix-valued function of two matrices (here 3× 3) we find that, in our context
in V , we have

L(Q)D = w1D + w2[Q, D ]+ + w3[Q2, D ]+ + w4Q + w5[Q, Q ]+, (B.1)

where the coefficients wi = wi (Q, D), i = 1, . . . , 5 are SO(3)-invariant polynomials
in (Q, D) such that w1, w2, w3 are functions of Q only while w4, w5 are linear in D.
The only candidates forw4 orw5 are tr(QD) and tr(Q2D)multiplied by invariant functions
of Q alone, and thus we find, as in [52], that

L(Q)D = v1D + v2[Q, D ]+ + v3[Q2, D ]+ + v4 tr(QD)Q + v5 tr(Q
2D)Q

+ v6 tr(QD)[Q, Q ]+ + v7 tr(Q
2D)[Q, Q ]+, (B.2)

where v1, . . . , v7 are polynomial functions of trQ2 and trQ3 with vi = wi for i = 1, 2, 3
and

w4 = v4 tr(QD) + v5 tr(Q
2D) (B.3)

w5 = v6 tr(QD) + v7 tr(Q
2D). (B.4)
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That (B.2) also holds in the smooth case follows from the results in [71].
Replacing D by ˜D := ˜R3(−ωt)D in (B.2) and using the eigenspace properties of [Z , · ]+
from Proposition A.2 to see that

[Z , Z ]+ = 2aZ so that Z2 = aZ + 1
3 tr(Z

2)I = aZ + 2a2 I, (B.5)

we find that

˜L(Z)D = L(Z)˜D = v∗
1
˜D + v∗

2 [Z , ˜D ]+ + v∗
4 tr(Z ˜D)Z , (B.6)

where

v∗
1 = v1 + 4a2v3 , v∗

2 = v2 + av3 , v∗
4 = (v4 + av5) + 2a(v6 + av7),

evaluated at Q = Z . Since the functions v1, . . . , v7 are SO(3)-invariant their values at Z
are the same as their values at Q∗ and depend only on a.
Observing from (4.30) that y(t, Q) is a linear function of D, as also is χ(t, Z) from (6.27),
we see that the expressions for y(t, Z) and χ(t, Z) arising from (B.2) and (B.6) are therefore
given by

y(t, Z) = v∗
1 y

c(t, Z) + v∗
2 yl (t, Z) + v∗

4 yq (t, Z) (B.7)

χ(t, Z) = v∗
1χc(t, Z) + v∗

2 χ l (t, Z) + v∗
4 χq (t, Z), (B.8)

with the notation of Section 6.3. Consequently the BZ
11 term in the second order term (5.36)

of the bifurcation function is exactly as evaluated in Section 6.5 but with the coefficients
mc,ml ,mq replaced by the coefficients v∗

1 , v∗
2 , v∗

4 , respectively.
Next, to obtain the D˜L term of the second order term of the bifurcation function (5.36) we
differentiate (B.1) with respect to Q at Q = Z ∈ O . For H ∈ V , this gives

(

DL(Z)H
)

˜D = w̄1˜D + w̄2[Z , ˜D ]+ + w̄3[Z2, ˜D ]+ + w̄4Z + w̄5[Z , Z ]+
+ w2[H, ˜D ]+ + w3[[Z , H ]+, ˜D ]+ + w4H + 2w5[Z , H ]+, (B.9)

where w̄i denotes the Q-derivative of wi at Q = Z applied to H for i = 1, . . . , 5. With p
denoting pZ11 and writing pH = HZ

11 etc. we see that the expression obtained by applying p
to (B.9) simplifies to

p
(

DL(Z)H
)

˜D = w̄1˜DZ
11 + aw̄2˜DZ

11 + 5a2w̄3˜DZ
11

+ w2 p[H, ˜D ]+ + w3 p[ ̂H , ˜D ]+ + (w4 + 2aw5)H
Z
11, (B.10)

where

[Z , H ]+ = ̂H := 2aH Z
0 + aH Z

1 − 2aH Z
2 ,

from the eigenspace decomposition of Proposition A.2. Here we again use (B.5) as well as
[Z , ˜D ]+11 = a˜DZ

11, and the coefficients wi are evaluated at Q = Z so that, in particular
from (B.3) and (B.4) with (B.5),

w4 = (v4 + av5) tr(Z ˜D) (B.11)

w5 = (v6 + av7) tr(Z ˜D). (B.12)

The contribution that (B.10) makes to the second order term F2(Z) of the bifurcation func-
tion (5.36) is obtained by substituting χ(t, Z) for H and integrating from t = 0 to t = T0.
Since

∫ T0

0
˜DZ
11dt = p

∫ T0

0
˜Rz ˜R3(−ωt)D dt = 0,
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and also, from (6.62)–(6.64),

∫ T0

0
tr(Z ˜D(t))χ Z

11dt = 0,

we obtain

p
∫ T0

0

(

DL(Z)χ(t, Z)
)

˜Ddt = w2

∫ T0

0
p[χ(t, Z), ˜D ]+dt

+w3

∫ T0

0
p[χ̂(t, Z), ˜D ]+dt (B.13)

with

χ̂ = 2aχ0 + aχ1 − 2aχ2. (B.14)

Hence, just as in Section 6.5, it is only Ll (Q) (see (1.5)) that contributes to the D˜L term
in (5.36).
Ifw3 = 0 we therefore see that the second order term f2(θ) of the bifurcation function f (θ)
in the general case (B.2) is obtained from the expression (7.4) but now with the coefficients
mc,ml ,mq that define Λ0,Λ2 in (6.65) simply replaced by the coefficients v∗

1 , v∗
2 , v∗

4
respectively. Observe that (B.2) corresponds to (1.5) with v1, v2, v4 = mc,ml ,mq and the
remaining coefficients v j = 0.

When w3 �= 0 there is the further term arising from
∫ T0
0 p[χ̂(t, Z), ˜D ]+dt . Writing (6.48)

as
∫ T0

0
p[χc(t, Z), ˜D ]+dt = −as0(λ, θ) + 3as2(μ, θ),

we see from (B.14) that

∫ T0

0
p[χ̂c(t, Z), ˜D ]+dt = −as0(λ, θ) × (2a) + 3as2(μ, θ) × (−2a)

= −2a2s0(λ, θ) − 6a2s2(μ, θ), (B.15)

so that also from (6.33) we get

∫ T0

0
p[χ̂ l (t, Z), ˜D ]+dt = −2a2s0(λ, θ) × (2a) − 6a2s2(μ, θ) × (−2a)

= −4a3s0(λ, θ) + 12a3s2(μ, θ), (B.16)

and from (6.61)

∫ T0

0
p[χ̂q (t, Z), ˜D ]+dt = −6a3s0(λ, θ) × (2a) = −12a4s0(λ, θ). (B.17)

Consequently, in the second order term of the bifurcation function the coefficients Λ0, Λ2
in (7.4) are replaced by their counterparts with the coefficients v∗

1 , v∗
2 , v∗

4 in place of
mc,ml ,mq , together with the coefficients arising from (B.15), (B.16), (B.17), giving

Λ0 = v∗
1
2 + 2av∗

1v∗
2 + 6a2v∗

1v∗
4 − w3

(

2a2v∗
1 + 4a3v∗

2 + 12a4v∗
4
)

(B.18)

Λ2 = v∗
1
2 + 2av∗

1v∗
2 − 8a2v∗

2
2 − w3

(

6a2v∗
1 − 12a3v∗

2
)

, (B.19)

where we recall that w3 = v3.
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